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Abstract—A new method to compute voltage and current 

waveforms of power electronic converters is proposed in the 

paper. The method relies on the simulation result of the averaged 

circuit model, and superimposes the ripple of the inductor 

currents to the obtained average values, assuming that the linear 

ripple approximation applies. To determine the amplitude of the 

switching ripple, a quasi steady state approximation is proposed. 

After the inductor currents are obtained, currents of switching 

components are computed by multiplying them with appropriate 

switching functions. The algorithm provides an efficient tool to 

generate the converter waveforms in order to compute their 

spectra, mean and RMS values, which are of interest in designing 

filters and estimating converter losses. 

Keywords-circuit averaging, linear ripple approximation, 

simulation, switched networks 

I.  INTRODUCTION 

Circuit simulation in power electronics is a demanding task 
[1]. The simulation problems focus a variety of problems, 
ranging from the problems of switching transitions, 
characterized by short time intervals where the phenomena of 
interest occur, up to the long term simulations of pulse width 
modulated (PWM) line-connected converters, lasting for 
several periods of the line voltage, with the time span covering 
a huge number of switching transitions. In the later case, it is 
likely that the simulation output files would be huge, with the 
data points distributed in time in a nonuniform fashion. To 
make the things worse, it is possible that the simulation will not 
be completed due to the infamous “convergence problems”. 
The convergence problems occur in Newton-Raphson iteration 
over nonlinearity [2], and they frequently follow simulations in 
power electronics since the essentially discontinuous 
waveforms encountered there cause the initial guess for the 
Newton-Raphson iteration to be poor in the vicinity of 
switching transitions. To overcome some of the problems 
mentioned, special simulation techniques intended for 
application on power electronic circuits have been developed 
[3, 4]. The methods are primarily based on piecewise linear 
device models, and avoid iteration over nonlinearity. 

Increased use of switching converters result in increased 
concern about the electromagnetic interference (EMI). To 
design EMI filters [5], spectra of the converter currents are of 
interest. In the case of switching PWM converters connected to 

the line, in some cases there are analytical solutions for the 
spectra, expressed in terms of series involving the Bessel 
functions, according to the Jacobi-Anger expansion [6]. 
However, in most of the cases a numerical simulation approach 
is needed, which is a demanding task. The converter switching 
frequency is usually much higher than the line frequency, 

0ff S >> , thus simulation over many switching periods would 

be required. On the other hand, details of the switching 
transitions, in the case the switching is done properly, are not 
of particular interest in determining the converter current 
spectra. This is a motivation to develop a new simulation 
method that would neglect details of switching transitions and 
avoid infamous convergence problems, while providing the 
waveforms accurate enough to determine the spectra. A 
simulation method aimed in this direction is proposed in this 
paper. It is based on simulation of the converter averaged 
circuit model [7], while actual waveforms of the converter 
inductor currents are obtained by superimposing the switching 
ripple to the obtained averaged waveforms. To determine 
amplitude of the switching ripple, a newly introduced quasi 
steady state approximation is applied. In this manner, the 
waveforms are obtained in an efficient and reliable manner, 
avoiding the convergence problems. 

To illustrate the simulation problems focused in this paper 
and to demonstrate the proposed algorithms, an inverter system 
shown in Fig. 1 is used as an example. The inverter system 
should supply an AC voltage source 

 ( )tVv mG 0cos ω=  (1) 

 

Figure 1.  The inverter system. 

IX Symposium Industrial Electronics INDEL 2012, Banja Luka, November 01�03, 2012

22



 

Figure 2.  The switch structure. 

with the average current over the switching period 

 ( )tIi mL 0cos ω= . (2) 

In the examples analyzed in this paper, it is assumed that 

V2230=mV , Hz5020 ×= πω , and that the current is 

programmed such that A20=mI . To achieve this, the inverter 

is operated with the constant switching frequency of 

kHz20=Sf , with an appropriate duty ratio function ( )td , to 

be determined by the averaged circuit analysis. The input 

voltage is assumed constant, V450=INV , and the coupling 

inductor is assumed to have mH4.1=L . Each of the switches 

in the inverter is built using an unidirectional controlled switch 
and an antiparallel diode, as depicted in Fig. 2. The current of 

the switch Ski  consists of the controlled switch current SkSi  and 

the diode current SkDi  according to 

 SkDSkSSk iii −= . (3) 

The simulation problem is to determine the waveforms of 

Li , INi  aiming their spectra, as well as to determine the 

waveforms of Ski , SkSi , and SkDi  for { }4,3,2,1∈k  aiming their 

average and RMS values to estimate the converter losses. 

II. THE AVERAGED CIRCUIT MODEL 

The first step in obtaining the desired solution is to solve 
the averaged circuit. In the example focused in this paper, this 
step is going to be performed analytically and manually. 
However, solution of the averaged circuit can also be obtained 
numerically. This is not a difficult numerical problem, since the 
differential equations that characterize averaged circuits are 
smooth, because all of the averaged voltages and currents are 
continuous in time. 

To inject the current Li  into the stiff voltage source Gv  as 

specified by (2), the average of the inverter output voltage over 
the switching period should be 

 ( ) ( )tLItV
dt
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This is achieved by the inverter switching with the duty ratio 
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Waveforms of Gv , dtidLv LL = , and Xv  are shown in 

Fig. 3, illustrating that the average voltage across the inductor 
is significantly lower than the surrounding voltages. This 
would be important for the approximations used in subsequent 
analyses. 

 

Figure 3.  Averaged voltages in the circuit. 

III. LINEAR RIPPLE APPROXIMATION 

The first assumption required by the proposed method is 
that the linear ripple approximation applies. Focusing to a 

switching interval STt <<0 , SS fT 1= , the linear ripple 

approximation assumes that the inductor voltage over the 

interval is a constant 1LV  during SdTt <<0 , and an another 

constant 2LV  during SS TtdT << . Under these assumptions, 

the inductor current ripple is a piecewise linear function of 

time. It will also be assumed that 01 >LV  and 02 <LV . The 

linear ripple approximation is used to analyze switching 

converters in steady state, where ( ) ( )0LSL iTi = . In that case, the 

amplitude of the inductor current ripple is given by 
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which provides the same 21 LLL iii ∆=∆=∆  in the converter 

steady state operation, since according to the volt-second 
balance  

 0'21 =+ dVdV LL . (8) 
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IV. QUASI STEADY STATE APPROXIMATION 

Purpose of the quasi steady state approximation is to 
determine envelope of the inductor current while the inductor is 
not in the steady state operation over the switching interval, i.e. 

( ) ( )0LSL iTi ≠ . Assuming that the inductor operation is not far 

from the steady state, amplitude of the inductor current ripple 
could be computed using (6) and (7). In the example circuit of 
Fig. 1, for the given set of parameters amplitudes of the 

inductor current ripple 1Li∆  computed using (6) and 2Li∆  

computed using (7) are presented in Fig. 4. There is not a big 
difference between the waveforms, but still there is a 
difference. The difference could be computed as 
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which fits to the waveform of the difference shown in Fig. 4. 

This indicates that having Lv  low in comparison to the 

surrounding voltages is essential for application of the quasi 
steady state approximation, as already indicated. 

To compromise between the two predictions of the inductor 
current ripple amplitude in the non steady state conditions, the 
average of the predictions is proposed, resulting in 
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This formula for the inductor current ripple amplitude 
constitutes the quasi steady state approximation. In the case of 
the example circuit of Fig. 1, the formula provides the envelope 
of the inductor current as depicted in Fig. 5. 

V. CONSTRUCTION OF THE CURRENT WAVEFORMS  

The methods introduced this far are aimed to construct the 
waveforms of the converter currents. Essential waveform to be 
constructed is the waveform of the inductor current. The other 
waveforms are constructed applying the obtained inductor 
current waveform and appropriate switching functions. 

 

Figure 4.  Amplitude of the inductor current ripple. 

 

Figure 5.  Envelope of the inductor current. 

 

Figure 6.  Definition of the ( )d,lr τ  switching function. 

To construct the inductor current waveform, the switching 

ripple prototype function ( )d,lr τ  (lr stands for “linear ripple”) 

depicted in Fig. 6 is applied, and the inductor current is 
obtained as  

 ( ) ( ) ( ) ( )( )tdttititi LLL ,lr∆+=  (11) 

where ( )tiL  and ( )td  are obtained as a result of the averaged 

circuit analysis, while ( )tiL∆  is obtained applying the quasi 

steady state approximation proposed in this paper, in (10). 

After the inductor current waveform is obtained, 
waveforms of the switch currents are constructed applying 

switching functions ( )d,d1τ  and ( )d,d0 τ , defined in a similar 

manner as ( )d,lr τ , as depicted in Figs. 7 and 8. Application of 

the switching functions to construct the waveforms of 1Si  and 

2Si  results in 

 ( ) ( ) ( )( )tdttiti LS ,d11 ×=  (12) 

and 

 ( ) ( ) ( )( )tdttiti LS ,d02 ×= . (13) 
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Figure 7.  Definition of the ( )d,1d τ  switching function. 

 

Figure 8.  Definition of the ( )d,0d τ  switching function. 

It should be noted here that functions ( )d,d1τ  and ( )d,d0 τ  

take only values 0 or 1, which should be used to reduce the 
computational burden. 

Functions ( )d,lr τ , ( )d,d1τ , ( )d,d0 τ  are introduced here in 

an intuitive fashion, by their diagrams for 75.0=d  shown in 

Figs. 6–8. Since the functions are piecewise linear, it is not a 
difficult task to obtain their analytical description, which is 
necessary for the software implementation, but avoided here 
due to the space limitations. 

To separate the switch current to the controlled switch 
current and the antiparallel diode current, according to Fig. 2, 
the Heaviside function is applied to model the additional 
switching. The controlled switch current is obtained as 

 ( ) ( ) ( )( )tititi SSSS 111 h×=  (14) 

while the diode current is obtained as 

 ( ) ( ) ( )( )tititi SSDS 111 h −×−= . (15) 

The same technique is applied for the remaining switches 
of the inverter. 

To determine the inverter input current, it is convenient to 
define an additional switching function, named d-selector 
function 

 

Figure 9.  Definition of the ( )d,ds τ  switching function. 

 

Figure 10.  Simulation, constructed waveform of 
Li . 

 ( ) ( ) ( )ddd ,d0,d1,ds τττ −=  (16) 

shown in Fig. 9. This reduces construction of ( )tiIN  to 

 ( ) ( ) ( )( )tdttiti LIN ,ds×= . (17) 

VI. SIMULATION RESULTS 

To illustrate the proposed algorithm and to fulfill the 
simulation requirements specified in the Introduction, the 

example circuit of Fig. 1 is simulated, i.e. waveforms of Li , 

INi , 1Si , SSi 1 , DSi 1 , 2Si , SSi 2 , and DSi 2  are constructed, and 

their mean values, RMS values, and the spectra are determined. 
The first step in the simulation was to solve the averaged 
circuit, which is in this case done analytically, resulting in the 

waveforms of Li  (actually, this waveform has been initially 

prescribed), Xv  and the duty-ratio function ( )td . The next step 

was to determine the amplitude of the inductor current ripple, 
which is done applying the quasi steady state approximation 
formalized by (10). Finally, the inductor current is constructed 
applying (11), which is followed by the construction of 

currents dependent on Li : INi , 1Si , SSi 1 , DSi 1 , 2Si , SSi 2 , and 

DSi 2 . The waveforms obtained applying the described 

procedure are shown in Figs. 10–13 during ten switching  
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Figure 11.  Simulation, constructed waveform of 
INi . 

 

Figure 12.  Simulation, constructed waveform of 
1Si . 

 

Figure 13.  Simulation, constructed waveform of 
2Si . 

intervals in the time segment from 2.5 ms to 3 ms. The 
waveforms are in agreement with the theoretical expectations. 

Significant ripple in the waveform of INi  is observed, 

indicating a strong need for its filtering. 

After the waveforms are obtained in 16000 regularly placed 
samples over the line period, using the Discrete Fourier 
Transform (DFT) and slight post-processing the one-sided 

spectra of Li  and INi  are obtained as presented in Figs. 14 and 

15. The spectra are shown with the frequency axes normalized 

to the switching frequency Sf , to illustrate that the spectral 

components group at the multiples of Sf . 

 

Figure 14.  Simulation, spectrum of 
Li . 

 

Figure 15.  Simulation, spectrum of 
INi . 

In Fig. 14, a fundamental harmonic component at 0f  with 

the amplitude of 20 A can be observed, which meets the initial 

requirements. The DC component of Li  is equal to zero. On the 

other hand, the DC component of INi , A20.7=INI , matches 

the value predicted applying the conservation of energy. 

Dominant AC component in INi  spectrum at low frequencies is 

at 02 f , with the amplitude of 7.25 A, which also meets the 

theoretical predictions obtained analyzing the averaged circuit. 
These two components could hardly be distinguished in the 
diagram of Fig. 15, since they are close one to another, and to 
observe them separately requires rescaling of the diagram. 

By post processing of the constructed waveforms, the RMS 

value of INi  is obtained, being equal to A14.25, =RMSINI . The 

value this high is caused by the significant content of the higher 

order harmonics. On the other hand, the RMS value of Li , 

A2514, .I RMSL =  is negligibly higher than the RMS value of its 

first harmonic of 14.14 A. Comparing the spectra of Figs. 14 

and 15, it can be concluded that INi  is significantly more 

polluted with the higher order harmonics than the waveform of 

Li . 

Finally, the average and the RMS values of SSi 1 , DSi 1 , 2Si , 

SSi 2 , and DSi 2  are obtained as A05.51 =SSI , A45.11 =DSI , 

A96.42 =SSI , A36.12 =DSI , while A07.9,1 =RMSSSI , 

A56.41 =RMSDSI , A99.82 =RMSSSI , A38.42 =RMSDSI . This 
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enables computation of losses in the switching elements, and 
concludes the circuit analysis according to the initially stated 
requirements. 

The simulation results are obtained by a program written in 
Python programming language [8], in PyLab environment, 
relying entirely on free software tools. The PyLab environment 
is chosen since it provides a comfortable access to NumPy and 
SciPy packages, that were used to provide array type objects 
and to perform numerical computations, like the Discrete 
Fourier Transform. Besides that, the PyLab environment 
provides a comfortable access to matplotlib package, which 
was used to plot the graphs shown in Figs. 3–15. The 
numerical simulation without generating the plots was 
completed in 2.09 s on a PC computer equipped with Intel 
Q8200 processor run at 2.33 GHz under Ubuntu 12.04 
operating system. However, to perform the simulation, to 
generate the plots with LaTeX lettering, and to store them with 
600 dpi resolution, took 19 s, indicating that the most of the 
runtime is spent on generating the graphs. Comparison to 
conventional simulation tools, like SPICE derivatives, naturally 
arises. However, it is not possible to perform a fair comparison, 
since the proposed simulation algorithm does not provide 
information about details of switching transitions, which 
generates the most of the computational burden in the 
conventional tools. Overall impression is that the simulation is 
much faster and much easier to perform, void of convergence 
problems, but the simulation result is different in the level of 
details provided. On the other hand, details of switching 
transitions provided by the conventional simulation tools rely 
on accurate component models that are not always available, 
which questions validity and meaning of the detailed 
simulation. 

VII. CONCLUSIONS 

In this paper, a novel method for simulation of switching 
power converters is proposed. The method is aimed to 
determine spectra of the converter currents and their mean and 
RMS values in cases where details of switching transitions are 
not of interest. Waveforms of the converter currents are 
constructed starting from the average currents of the inductors, 
superimposing the ripple waveforms to the average values in 
order to obtain the instantaneous value waveforms. Validity of 
the linear ripple approximation is assumed. To compute the 
ripple amplitude, a newly introduced quasi steady state 
approximation is used. Waveforms of the currents of the 
switching components are treated as dependent, and obtained 

from the currents of the inductors applying appropriate 
switching functions. The resulting algorithm is numerically 
efficient and void of the convergence problems. The output 
waveforms are obtained in the form of regularly sampled 
signals, suitable for the Fourier analysis. The method is initially 
meant to be applied in the EMI filter design. 

Work in progress regarding the algorithm includes: 

1. Further formalization of the algorithm, primarily in 
the area of the averaged circuit analysis. 

2. Quantitative analysis of the error introduced by 
accepted approximations. 

3. Generalization of the method to include converters 
operating in the discontinuous conduction mode. 

4. Quantitative characterization of the error introduced 
by the choice of DFT parameters, primarily the 
number of harmonics computed (related to the number 
of samples taken) and the spectral resolution (related 
to the number of line periods taken in the analysis). 

5. Experimental confirmation of the results. 
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