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Abstract— Increased energy demand, together with deregulated 

energy market, emphasizes the role of accurate electricity load 

prediction. Design of the reliable predictor has to capture the 

nature of the electricity load time series. Further, electricity load 

time series requires modeling in complex domain. Design of 

neural networks based models for electricity load prediction 

tasks demands appropriate choice of the activation function of a 

neuron, structure and size of the training set, and learning 

algorithm. Neural adaptive filters, with their inherent simplicity 

and efficient learning algorithms, provide adequate tool for 

analysis and modeling of electricity load time series. Also, 

application of collaborative adaptive filters can give a deeper 

insight in the nature of electricity load time series, thus enabling 

better predictions. Experiments, carried out on the test load 

signal, metered on a medium voltage feeder.  support the 

analysis. 
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I. INTRODUCTION 

The role of accurate electricity load time series prediction is 
emphasized by increase of energy demand and deregulated 
energy market. In oreder to obtain an accurate prediction, 
efficient and reliable predictor has to be employed. Further, the 
predictor must reflect the nature of time series at hand. Neural 
network (NN) models has ability to cope with process 
nonlinearity and to learn long term dependencies [1]. Also, data 
preprocesing and adequate learning algorithm can help when 
NN  has to deal with nonstationary time series. However 
design of NN based predictor requires answers to several 
questions. The questions regard choice of appropriate 
activation function (AF), learning algorithm, size and structure 
of training set, and NN structure [1]. A class of neural adaptive 
filters, equipped with gradient descent (GD) based learning 
algorithm, due to their simple structure, can not provide 
accurate long term predictions, yet they might provide insight 
in the caracter of the time series [2]. Also, they can indicate 
answers to some of the above mentioned questions, i.e. which 
AF of a neuron to apply, what is appropriate learning 
algorithm, as well as, to indicate the size of training set. 

Physical nature, of a power consumption process, requires 
modeling in the complex domain. The main challenge, when 
developing NN based model for prediction of complex valued 
time series, lies in a search for an appropriate nonlinear AF. 
Due to the result of the Liouville’s theorem, bounded and 
analytic complex nonlinear function on the whole complex 
plane C does not exist [3-5]. This fact led to several 
approaches. Within the dual univariate AF (DUAF) setup [3], 
real and imaginary parts of complex valued time series are 
processed separately. So, there are two real-valued bounded 
and analytic nonlinear AFs.  Thus, weight update is split in two 
part. The split complex (SC) approach means that real and 
imaginary part of the complex net input are processed 
separately by real valued sigmoid functions [3]. So, there is one 
weight update equation within the SC approach. Application of 
meromorphic functions as AFs defines the fully complex (FC) 
approach. Meromorphic functions are analytic everywhere, 
except on a discrete subset of C, which consists of function 
singularities [3,4]. Our aim is to investigate are the neural 
adaptive filters suitable for analysis and modeling of complex 
valued electricity load time series. To this cause, we provide 
comparative analysis of different GD based learning 
algorithms, as well as, different structures of neural adaptive 
filters. The analysis is carried out on the metered values of a 
complex-valued energy, in a distribution, medium voltage, 
grid. 

II. NEURAL ADAPTIVE FILTERS 

The structure of a neural adaptive finite impulse response 

(FIR) filter is given on Fig. 1. Operation of the filter (Fig. 1) is 

described as follows [6,2,3] 

 

 ( ) ( ( ))y k net k  (1) 

 ( ) ( ) ( )Tnet k k k x w  (2) 
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Figure 1.  A neural adaptive FIR filter. 

where y(k) denotes filter output, () denotes AF of the output 

neuron, net(k) is input to the neuron, N is length of filter tap 

inputs, k is a discrete time instant,       w(k)=[w1(k), w2(k),…, 

wN(k)]
T
 is the filter weight vector, ()

T
 denotes vector 

transpose and x(k)=[x1(k), x2(k),…, xN(k)]
T
 is the filter input 

vector, where xi(k)= x(k-i), i=1,2,…,N. Gradient descent 

learning algorithm for the filter (Fig. 1), is described by  

 ( 1) ( ) ( )k k J k   
w

w w  (3) 
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( ) ( )
2

J k e k  (4) 

 ( ) ( ) ( )e k d k y k   (5) 

 

where  is the step size, J(k) is the cost function, w() 

denotes gradient of a scalar function with respect to the weight 

vector w, denotes absolute value, e(k) is the error at the 

output neuron and d(k) is some desired, teaching signal. 

Computation of the gradient w J(k) depends on the type of 

nonlinear AF. According to [3,6] we can distinguish between 

following cases. 

 

A. FC FIR adaptive filter 

Computation of the cost function (4) gradient, having in mind 

that  is a meromorphic function,  is as follows 

 ( ) ( ) ( ).
r i

J k J k j J k   
w w w  (6) 

where j=√-1 and wr=( w), wi =( w). If we introduce 

e(k)=(e(k))+j(e(k))=er(k)+jei(k) we have 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).

r iJ k k k e k j k e k

e k k k

  

 

        

  

w
x

x
 (7) 

where for convenience ’
*
(net(k))=’

*
(k). Further, ()’ 

denotes first derivative and ()
*
   denotes complex conjugate. 

Now, from (3) and (7) we have weight update equation for the 

complex nonlinear gradient descent (CNGD) algorithm 

 ( 1) ( ) ( ) ( ) ( ).k k e k k k     w w x  (8) 

If  is linear AF, i.e. =net(k), (8) becomes 

 ( 1) ( ) ( ) ( ) ( ).k k e k k k     w w x  (9) 

which defines weight update for the complex least mean 

squares (CLMS) algorithm. 

 

B. SC FIR adaptive filter 

Within real-imaginary SC approach, output of the filter (1) is 

defined as [8] 

 
( ) ( ( ) ( )) ( ( ))

( ( )) ( ( )).

T

r i

y k k k net k

net k j net k 

   

 

x w
 (10) 

where net(k)=(net(k))+j(net(k))=netr(k)+jneti(k)  and  

denotes real-valued sigmoid nonlinearity. Computation of the 

gradient (6), for the weight update (3)  gives 
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k k e k net k

je k net k k

 

 

  



w w

x
 (11) 

Note that if  is linear function (11) transforms into (9).. 

 

C. DUAF approach 

Within the DUAF approach signal processing is performed 

parallel on two real-valued signals. In this case signal is 

processed by two LMS, in linear case, or NGD algorithms, in 

nonlinear case. 

 

D. Normalized learning algorithms 

Normalized gradient learning algorithms provide variable step 

size ., which yields Within the normalized complex least 

mean squares (NCLMS) algorithm, the step size is 

NCLMS(k)=η/(+||x(k)||2
2
)  , while in a nonlinear case, 

normalized complex nonlinear gradient descent (NCNGD) 

algorithm has the step size NCNGD(k)=η/(C+|’(k)|
2
||x(k)||2

2
). 

In both cases   η, , and C are small positive constants.  

III. COLABORATIVE ADAPTIVE FILTERS 

Structure of the collaborative adaptive filter [3] is given on 
the Fig. 2. The idea is to form a convex combination of two 
FIR adaptive filters.  Even it is, at the first, intended for 
improvement of the performance of standard algorithms, it can 
be used to compare different algorithms and structures.  

 

Filter 1 

w1(k) 

Filter 2 

w2(k) 

 

x(k) 

d(k) 

   +    y(k) 

- 

λ(k) 

1-λ(k) 

  + 

- 

- 

  + 

e1(k) 

e2(k) 

e(k) 

 

+ 

 

- 

 

Figure 2.  Structure of the collaborative adaptive filters. 

Operation of the structure given on the Fig. 2. can be 
described as follows 

 1 2( ) ( ) ( ) (1 ( )) ( )y k k y k k y k     (12) 
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where 0 ( ) 1k  , 
1( )y k  and 

2 ( )y k denote outputs of filter 1 

and filter 2, respectively. Parameter 0 ( ) 1k  is updated on-

line, in the GD manner, thus we have 

 
1 2

( 1) ( ) ( )

( ) ( )( ( ) ( ))

k k J k

k e k y k y k

 



  

 

   

  
 (13) 

In the case of complex valued signals (13) becomes 

 
1 2

( 1) ( ) ( )

( ) ( )( ( ) ( ))

k k J k

k e k y k y k

 



  

  

   

  
 (14) 

From (13) and (14) follows application of collaborative 
adaptive filters in algorithm analysis. Change of the value of 

( )k indicates which algorithm has better performance, and 

therefore more suitable for concrete application. 

IV. EXPERIMENTAL RESULTS 

The experiments were carried out, as one step ahead signal 

prediction, in order to analyze application different learning 

algorithms and structures in complex valued electricity load 

time series. The normalized test complex valued load signal is 

shown on the Fig. 4. and Fig. 5. The signals represent fifteen 

minutes average of active and reactive power, metered at the 

10 kV feeder, in the Transformer station Banja Luka 2. The 

signals were normalized with respect to the maximum of the 

load absolute value, in order to fit the range of sigmoid 

nonlinearity. The logistic AF (z)=1/(1+exp(-z)) was used 

within the experiments as sigmoid nonlinearity at the neuron, 

with the slope =4. The performance measure was standard 

prediction gain Rp=10log10(y
2
/e

2
), where y

2
 and e

2
 denote 

variances of the predicted signal and the output error, 

respectively. In the first experiment the step size was =0.3. 

The length of filter tap inputs varied from 1 to 30. In the 

NCLMS and NCNGD algorithms the parameters were set as 

η=0.3, =C=10
-5

.. Summary of the results for a linear adaptive 

filters is shown on the Fig. 5, while results for a nonlinear 

neural adaptive filter are shown on the Fig. 6. 

 

 

Figure 3.  Real part of the test signal. 

 

Figure 4.  Imaginary part of the test signal. 

 

Figure 5.  Performance of linear adaptive filters in the first experiment. 

 

Figure 6.  Performance of nonlinear adaptive FIR filters in the second 

experiment. 

In the second experiment collaborative adaptive filters 

were applied for the complex valued load prediction task. 
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Three combinations of algorithms were tested, i.e. CLMS and 

CNGD, CLMS and NCLMS, and NCLMS and NCNGD. For 

all filters FC approach was applied. Filter tap lengths were 

N=10 and N=30. For higher filter tap lengths the step size of 

the CLMS was reduced from 0.3  to 0.05  due to 

stability problems. The results of  the second experiment are  

 

TABLE I.  SUMMARY OF THE RESULTS IN THE SECOND EXPERIMENT 

Filter Tap Length, 

N 

CLMS and FCNGD CLMS and NCLMS NCLMS and NCNGD 

CLMS FCNGD Col. Filt. CLMS NCLMs Col. Filt. NCLMS NCNGD Col. Filt. 

10 

15.30dB 9.30dB 17.73dB 15.30dB 18.17dB 17.45dB 18.17dB 17.64dB 21.92dB 

η=0.1 η=0.3 ηλ=0.5 η=0.1 η=0.3 ηλ=0.5 η=0.3 η=0.3 ηλ=0.5 

30 

15.13dB 19.44dB 19.11dB 15.13dB 18.47dB 17.73dB 18.47dB 21.92dB 21.83dB 

η=0.05 η=0.3 ηλ=0.5 η=0.05 η=0.3 ηλ=0.5 η=0.3 η=0.3 ηλ=0.5 

 

summarized in the Table. I From the first experiment it is 
obvious that FC approach gives the best results. Further, 
increase of the filter order significantly improves performance 
of nonlinear algorithms. Also, CLMS algorithm and linear 
DUAF approach was become unstable for larger filter tap 
lengths. Normalized algorithms, both for linear and nonlinear 
algorithms, have the best performance. Results of the second 
experiment verify the outcome of the first experiment. They 
indicate presence of long term dependencies in the analyzed 
time series and its nonlinear nature. Even in the case where 
linear algorithm outperforms nonlinear one, overall 
performance of the collaborative structure is improved, 
comparing to the performance of its constituents. When the 
performance of nonlinear and/or normalized algorithms is at its 
maximum, companion algorithm decreases performance of the 
overall collaborative structure.   

V. CONCLUSIONS 

Complex valued electricity load time series prediction is 
very important for operation of power utilities in deregulated 
energy market. Nature of the electricity load time series 
demands modeling in the complex domain. Development, of 
the NN based model for the load prediction tasks, requires 
choices to be made on the appropriate AF of a neuron, learning 
algorithm, and size and structure of the training set. To this 
cause, GD neural adaptive filters have been employed in an 
analysis and modeling of electricity load time series. Filters 

with larger tap length have had a better performance thus 
indicating long term dependencies of analyzed time series. 
Further, performance of nonlinear and/or normalized 
algorithms indicates nonlinear nature of analyzed time series. 
Also, filters with FC AF have exhibited increased performance, 
thus indicating that the AF of a neuron should be a 
meromorphic function.   
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