
Web Server

Time

Stamping

Server

Authentication

Server

Database

Server
Firewall

External

users
Internet

DMZ

File server

Application

server

Data Access

Layer

Business

Layer

Presentation

Layer

Figure 1. Typical architecture of the EDMS.

An Example of the 4-Tier Security Architecture on

Transmission Electronic Documents

Siniša Vujčić,

Depart. of IP/MPLS network administration and maintenance

M:tel – Telekom Srpske

Banjaluka, R. Srpska, B&H,

sinisa.vujcic@mtel.ba

Abstract—In this paper is described an example of 4-layer

cryptography architecture aimed for strong cryptography

protection of electronic documents. Brief introduction, technical

background and development environment are given at the

beginning of paper. Main goal was to develop client/server

cryptographic software processor that have implemented:

SSL/TLS client to server connection, digital signing, digital

envelope and data scrambling crypto protection. It was given

design proposal and solution description. Finally, system was

tested and results are presented. Conclusion summary and

possible future development are given at the end of paper.

Keywords-cryptography, encryption, digital evelope, data

scrambling, smartcard

I. INTRODUCTION

A Document Management System (DMS) [1] is the
organizational process of all documents from the creation,
storage and organization, search and access, to the destruction
at the end of lifecycle. An Electronic Document Management
System (EDMS) stores electronic versions of documents,
usually, scanned copies of paper documents and documents
that have already been produced electronically. Typical
topology of the EDMS is shown on Fig.1. Documents are
usually organized into a file/folder system, which allows users
fast retrieval through browsing or indexing systems. [2]

A good electronic document management system is one of
the best ways to streamline business processes and increase
productivity. As we can suppose the Document security is vital
in many document management applications. The Work

described in this paper is focused and dedicated on that very
important segment of EDMS. We could define next security
problems:

 Secrecy - Keeping information private out of
unauthorized parties.

 Authentication-Proving users identity, before revealing
Documents.

 Non-repudiation - proving that a message was sent by
users

 Integrity - Proving that a message wasn’t modified
during transmission.

Main goal of described work was to propose, plan and
design one solution of four-tier security system capable to well
enough secure documents in EDMS system. It was planed that
system have included security layers below:

 Transport layer security

 Digital signature

 Digital envelope

 Data scrambling (data masking, obfuscation)

These features should ensure next important requirements.

 Confidentiality - data accessed and read only by
authorized parties

 Integrity – data modification by authorized parties

 Availability – data available to authorized parties

 It was planed that system should be designed as two-tier
client/server software system capable to be hosted as Stand-
alone application or as software module in bigger software
system.

II. TECHNOLOGY BACKGROUND AND

CRYPTOGRAPHY TECHNIQUE

This chapter describes brief introductory regarding the
cryptography methods implemented and technology used to
design proposed system. Under term File Cryptography
protection we can assume the theory and implementation of

IX Symposium Industrial Electronics INDEL 2012, Banja Luka, November 01�03, 2012

209

techniques for secure communication between communication
peers in the presence of third parties (adversaries).
Cryptography techniques are differentiated based on the layer
of OSI (The Open Systems Interconnection) model on which
are implemented. The TLS (Transport layer security) and its
predecessor SSL (Secured socked layer) are cryptographic
protocols of the fourth layer (Transport) of the OSI model. It
assumes asymmetric cryptography for key exchange,
symmetric encryption for confidentiality, and message
authentication codes for message integrity. A valid sender
digital signature gives a recipient reason to believe that a
known sender created the message, and that it was not altered
during transmission.

Digital envelope is a type of security that uses two layers of
encryption to protect a message. First, the message itself, is
encoded using symmetric encryption, and then the key to
decode the message is encrypted using public-key encryption.
This technique overcomes one of the problems of public-key
encryption, due to low processing speed of asymmetric
encryption.

Data scrambling, (data masking) is a security measure
designed to protect confidential and sensitive data from both
internal and external threats by masking sensitive data to
prevent the risk of exposing it to unauthorized users. There are
few different ways in which it can be masked. It this case, the
way is transposition block of document and rearrange this
block according the generated pseudo-random sequence.

So, designer goal was to design software system that has all
four techniques implemented in. Next chapter describes the
way of implementation and software architecture.

III. DESIGN

In this chapter is described software development kit and
hardware platform used to develop and test proposed system.

Both subsystem, client and server, were developed using
Java programming language. All source code was written and
tested using Oracle JDeveloper 11g, as a code designer. Java
JDK 1.6.31 was used as a software development kit. Two
software cryptography libraries were used to upgrade crypto
functionality:

 Bouncy Castle crypto libraries (BC) [3] are an open-
source lightweight cryptography API for Java and C#.
In this project it was used to generate digital envelope
and PKCS7 format digital signature. PKCS is a group
of public-key cryptography standards devised and
published by RSA Security Inc, starting in the early
1990. PKCS7 is Cryptographic Message Syntax
Standard used to sign and encrypt messages under a
PKI and often used for single sign-on.

 J4sign [4] is an extension of the open source BC for
using PKCS#11 tokens. It was used as a library for
generation external signed PKCS7 digital signature.

Two hardware platforms were used as test machines:

a) Laptop model HP nx6320 based on prosessor Intel T2500

2GHz, with 1Gb RAM running MS Windows XP Professional

SP2. In this context it was used as a client side machine

b) Laptop model ASUS k53u based on prosessor AMD C-50

1GHz, with 2Gb RAM, running MS Windows XP

Professional SP3. In this context it was used as a server

machine.
Both computers were connected with crossover UTP cable
making very simple, L2 based, client/server network.

Also, it was used USB smart card reader OMNIKEY
cardman 3021 as well as dedicate dll middleware file.

Both subsystems, client and server, were developed to
accomplish next goal features:

 First security layer (Transport layer security), realized
as a SSL/TLS security channel between
communication peers. In this case it is based on
bilateral (client and server) authentication. Client
Certificate is located in jks file (Java key store) on
server machine. Server certificate is located in
smartcard or in client jks file, depending on operation
mode.

 Second security layer (Digital signature), is
application layer security based on digital signing and
verification functionality. As a result of procedure,
there is a generation of PKCS7 formatted digital
signed file (document).

 Third security layer (Digital envelope), is application
layer security based on asymmetric protection of the
Secret Key used to generation of a cipher. In short, The
Document (file) is encrypted using symmetric
cryptography. Secret key is generated and used as a
key for encryption. Due to leak of speed of asymmetric
encryption, symmetric encryption is used to protect the
payload file. Asymmetric cryptography was used only
to encrypt the Key. Encrypted Document file, as well
as, enclosed protected key making The Digital
envelope.

 Fourth security layer (Data scrambling), is application
layer security based on data hiding technique. Source
document is split in n blocks, later rearranged to
generate scrambled file. One new and random
generated block was intentionally added to enforce
security in case possible cryptanalysis attack.

Client software supposed to be hosted on client machines
(work places). It is possible to run the client as Standalone
application or as a module in bigger software systems
(EDMS client side Graphical User Interface). Server side
software has a role of application and file server. It is based
on listener and file manager subsystem. It supposed to be a
part of The EDMS server system, or work as a standalone
application depending on type of usage. Two jks (Java Key
Store) have been generated, as well as, key pairs in both of
them. One jks file was stored on client machine and the
other on the server machine. Self signed certificates were
generated and exported. Client certificated has been
imported in server jks file and server certificate has also

210

been exported and imported into client jks. This procedure
has to be obtained due to using this certificates and private
keys during the cryptography processing.

Production usage is based on two modes:

 Upload mode, used in case of document transmission
from client side to server side software. It is initiated in
case of storage new file on the document server.

 Download mode, used in case of demand for document
that had already been archived on EDMS server. It is
initiated by client request for document and served by
server, which encrypt requested document and send
delivered it to client.

The following paragraph describes fourth security layer
based on data masking technique. This layer should increase
general security by applying Transposition and Detransposition
process on a preprocessed document. Complete process is
presented by algorithm shown on Figure 2. The main goal was
to change structure of the document by scrambling
(Transposition) and extend time necessary to possible
encryption, and detection of successful crypto-attack. Source
document for this layer is previously signed and enveloped
document.

 Transposition process begins with the random
sequence generation. The resulted document is rearranged
according to this sequence. The redundant block is randomly
generated and inserted in scrambled document. Random
generated sequence was encrypted by asymmetric algorithm
and sent during the transmission process. This sequence was
also used to detect redundant block and reassembling source
document. During the Transposition process this (redundant)
block was located on zero position. Process of detransposition
used to ignore the redundant block. Table I. shows time
estimation necessary for cryptanalysis of the sequence order by
brute-force attack.

TABLE I. BRUTE-FORCE ATTACK TIME PREDICTION

No of blocks Max combination No Time estimated {days}

13 87178291200 1

14 1307674368000 15

15 20922789888000 242

16 355687428096000 4117

17 6402373705728000 74101

18 121645100408832000 1407929

Estimation was based on 10
6
 attacks per second. In this

case time required is computed as the variation number without
repetition.

Client side software was designed as java application
hosted on client machines, and intended to handle client

request for download and upload files (documents) to EDMS
server. Software design is shown by algorithm shown on
Fig. 2. As it was mentioned above, client software was
implemented to perform all four layer of cryptography
protection. It is important to notice that client software is
responsible to initiate connection to server and utilities
smartcard to generate digital signature and/or generate digital
envelope. Structure of processed document is shown on Fig.5

Transposition

START

Next block

<

Block No

+

FILE LENGTH = Len(ULAZ)

BLOCK No = Len(ULAZ)

REST LENGTH

i < Segment

No

+

N
O

Y
E

S

result

=

Buffer[sequence(i)];

i++;

Block

counter ++

result = result+rest

Transposition END

Buffer[0]=RND

Detransposition

START

Next block

<

Block No

+

FILE LENGTH = Len(ULAZ)

BLOCK No = Len(ULAZ)

REST LENGTH

i < Segment

No

+

N
O

Y
E

S

Block

counter ++

Detransposition END

Buffer[0]=RND

result

=

Buffer[sequence(i)];

i++;

result = result+rest

Figure 2. Document Transposition and Detransposition algorithm.

211

Start parameter are:

 Server ip-address,

 Port number, over which connection is going to be
established

 Mode, upload document or request for download.

 Name of the document requested or to be

 Configuration type, which includes operation mode
due to source of certificates.

Server side software was designed as java application
hosted on server machines, and intended to handle client
request for download and upload files (documents) to EDMS.
Software is capable to handle many client requests using
multithreading. Software design is shown by algorithm shown
on Fig. 4. Start parameter are port number on which is listener
configure to listen the client requests.

Client

START

SSL object Initialisation

Y
E

S

NOServer connection

Document
Utility object

Initialisation

Document

Upload

Utility object

Initialisation

Signature

verification

Document

Download

YES

NO

Error handling

END

S
S

L

s
o

c
k
e

t

Request type

Document signing

(smartcard)

Document encryption

(smartcard)

Data scrambling

S
S

L

s
o

c
k
e

t

Inicijalizacija

pomoćnih objekata

Document ID

descrambling

Document decryption

(smartkartica)

Closing utility

objects
Closing utility

objects

END

Error

handling

Signed

document

Cypher

Cypher

Signed

document

Document

Figure 3. Client module algorithm.

Server START

SSL object initialisation

+

Y
E

S
NO

Connection

request

mode

Signed

document

Init support object

Document server

Document ID

Document

download

S
S

L
 s

o
c
k
e

t

Signature

verification

Document

Upload

Document server

Document

Document

store

YES

S
S

L

s
o

c
k
e

t

NO

Closing support

document
Closing support

document

END

Error

handling

Document signing

Document encryption (jks)

Cypher transposition

Init support object

Document ID

Detransposition

Document decryption (jks)

Cypher

Document

Figure 4. Server module algorithm.

Mode
Document

title
Sequence Document

Figure 5. Structure of Encrypted Document.

212

 IV. TESTS AND RESULTS

Test measuring have been intended to measure achieved
system performance. Test lab was made by simple L2
connection of two hosts running client and server software
respectively. Parameterization was based on source of the
certificates and document size. All measuring have been based
on approximately 50 measuring. Measured value was average
value of every series. Approximately 5% of samples of every
series (min. and max.) have been rejected as incorrect due to
impact of background processes of the laptop operating system.
The way the measuring has been performed was based on
starting client software and store measured results in log file.
Server software has been running for all the time of measuring.
There were two System functions capable to measure time of
process execution and those are: System.currentTimeMillis()
and System.nanoTime(). In the Table belov have been shown
main characteristics of both of them.

TABLE II. MEASURING METHODS. MAIN FEATURES AND

OVERVIEW.

 Function Precision Time Source

1 System.currentTimeMillis() 1ms System clock

2 System.nanoTime() 1ns CPU counter

First method shown has a more reliable time source, but the
second one is much more accurate. Two measuring methods
have been compared on independent test and it was measured
that difference in between them is less than 1%.

First Measures were performed in three series:

 First series assumed that client software conntact only
jks archive to fetch necessary certificates and private
keys

 Second series assumed that client software conntact jks
archive to fetch necessary certificates but access
private key stored on smartcard

 Third series assumed that client software conntact only
smartcard to fetch necessary certificates and private
keys.

Second measure was intended to explore impact of file size
(document size) and transmission direction to processing time.

TABLE III. COMPARED RESULTS OBTAINED ON THE SAME

HARDVARE PLATFORM (CLIENT AND SERVER HOSTED ON THE

SAME MACHINE)

Key location
Upload

[s]

Upload

Impact rate

[%]

Download

[s]

Download

Impact rate

[%]

jks file 1319,3 38 1459,93 71

jks/smartcard 3086.4 89 1249.9 61

smart card 3466,4 100 2056,2 100

TABLE IV. COMPARED RESULTS OBTAINED ON THE

SEPARATED HARDWARE PLATFORM S (CLIENT MACHINE AND

SERVER MACHINE).

Key location
Upload

[s]

Upload

Impact rate

[%]

Download

[s]

Download

Impact rate

[%]

jks file 1695,7 43 1878,4 66

jks/smartcard 3508.5 89 2052 72

smart card 3943,6 100 2859,9 100

TABLE V. IMPACT OF FILE SIZE, TRANSMISSION DIRECTION

TO PROCESSING TIME

Mode

Key

length

Document

[Mb]

Processing

time

[s]

Download

Impact rate

[%]

download 1024 1 2052 29

upload 1024 1 3508.5 50

download 1024 5 4250.2 61

upload 1024 5 4613.4 66

upload 1024 10 5730.5 82

download 1024 10 6981.4 100

V. CONCLUSION AND FUTURE WORK

The software design and results shown in this paper are
excerpt of bigger research, that also assumes cryptography
performance analyze. It has been shown The Idea and practical
design of 4-layer cryptography protection system with all the
mainstream features (SSL, digital signature and digital
envelope). Also, it was shown possibility that all the client side
features can be implemented on smart card only, so there is no
need to have jks file stored on client. Presented results show
that there isn’t significant decreasing of performance by using
smart card instead of using just jks files. It is also important to
note that jks file security is based on password used to encrypt
the file itself. On the other hand, smart card security is based
on smart card hardware, so there aren’t possibility to read
private key stored on it due to hardware protection. The reasons
for not to use smart cards are minor comparing to benefits of
better keys security. Future work might be headed to construct
better algorithm for data scrambling. In this context random
function, used as sequence generator, was implemented by
standard java classes. Using smart card to generate random
sequence might solve this functionality. Next necessary feature
might be including time-stamp in processed document.

REFERENCES

[1] Jedno rješenje softverskog sistema za arhiviranje i manipulaciju
dokumentima baziranog na open source softveru, Siniša Vujčić, Infoteh
2007, hotel Bistrica, Jahorina

[2] http://www.techopedia.com/definition/12769/electronic-document-
management-system-edms

[3] http://www.bouncycastle.org/index.html

[4] http://j4sign.sourceforge.net/index.htm

213

