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Abstract—One step ahead prediction method for peak daily 

electricity loads based on artificial neural networks (ANN) is 

presented. Two architectures of ANN were implemented to 

produce predictions that were used to generate the final value as 

an average. Examples will be given confirming both the 

feasibility of the method and the need for further elaboration of 

the procedure. 
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I.  INTRODUCTION 

The necessity of load forecasting is nowadays broadly 
recognized. Precise load forecasting helps the electric utility to 
make unit commitment decisions, reduce spinning reserve 
capacity and schedule device maintenance plan properly. In 
addition, corrective actions may be prepared, such as to avoid 
load shedding, planning power purchases and bringing peaking 
units on line. Especially, as noted in [1] accurate short-term 
forecasts are needed by both generators and consumers of 
electricity particularly during periods of abnormal peak load 
demand. 

The electricity forecasting period may span from several 
tenths of minutes to several years so very short term (at tenths 
of minutes level), short term (hourly), daily, weekly, monthly 
and yearly load forecasts may be encountered. The proceedings 
presented here are based on our previous results related to short 
term prediction [2,3,4]. Here we implement similar methods to 
generate the forecast of a daily peak value for a given load. 
Data were extracted from the 1999 UNITE competition [5]. 

Our method is based on several hypotheses. First we claim 
that main influence to the future value may have the most 
recent observables. These contain most recent information on 
trend, season and weather. Second, we believe that if quality 
forecast is to be obtained, one that may be used for action, one 
is not supposed to try many time steps in advance. One or two 
time steps are the best one can afford. That is why the time 
series is presented here as deterministic and one-step-ahead 
prediction is planned. To help the prediction, however, in an 
appropriate way, we introduce past values e.g. loads for the 
same day but in previous weeks. That is in accordance with 
existing experience claiming that every day in the week has its 
own general consumption profile [6].  

In many load forecasting procedures weather data are used 
as basic input together with the load time series. We here have 
a specific opinion about the use of weather data. First, as can 
be seen from experiments [7] it is not easy to establish a 

significant correlation between the weather parameters and the 
peak load value.  Second, for the prediction instant no weather 
data are available. These are to be generated by pre-diction 
with equal uncertainty as the main prediction. Finally, the 
known load values already contain information on the weather 
if any correlation exists.  

As an example of the uncertainty of long term weather 
prediction based on abundant amount of data let us consider the 
day of December 19, 2011 which is celebrated as the St. 
Nicolas by the Orthodox Church exercising the Julian calendar. 
It is the most celebrated Serbian “Slava” and while “half of the 
people celebrate the other half is visiting the families that 
celebrate”. There is always snow at St. Nicolas. There are even 
proverbs related to the snow at St. Nicolas. On the last St. 
Nicolas day, however, there was no snow and the temperature 
was above zero all day. Nobody could predict that state one 
month earlier at November 19, 2011, while everyone could do 
that at December 18, 2011. 

The problem of daily peak load forecasting was considered 
many times in the literature [8,9,10]. As can be seen statistical 
methods are used. 

One of the approaches to load forecast is implementation of 
artificial neural networks (ANN) [11,12]. The main advantage 
of the method is related to the property of the ANN to be an 
universal approximator meaning the main problem of 
regression: the choice of the approximating function, is solved 
in advance. A common feature, however, of the existing 
application is that they ask for a relatively long time series to 
become effective. Typically it should be not shorter than 50 
data points [11].  

Following these considerations new forecasting 
architectures were developed [2,3,4]. Namely, prediction is an 
activity that is always related to uncertainty. One is supposed to 
have at least two solutions for them to support each other. The 
structures developed were named Time Controlled Recurrent 
(TCR) and Feed Forward Accommodated for Prediction 
(FFAP). Both were implemented successfully for prediction in 
modern developments in micro electronics [2] as well as in 
other areas including hourly [3,4] and yearly [8] load 
prediction. 

Here we present extensions of the TCR and FFAP ANNs 
that allow for implementation in daily peak load prediction. 
These are named extended TCR (ETCR) and extended FFAP 
(EFFAP).  

The structure of the paper is as follows. After general 
definitions and statement of the problem we will give a short 
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description of the two solutions. After presenting the 
experimental results a short discussion of the results and 
consideration related to future work will be given. 

II. PROBLEM FORMULATION 

A time series is a number of observations that are taken 
consecutively in time. A time series that can be predicted 
precisely is called deterministic, while a time series that has 
future elements which can be partly determined using previous 
values, while the exact values cannot be predicted, is said to be 
stochastic. We are here addressing only deterministic type of 
time series. 

Consider a scalar time series denoted by yi, i=1,2, … m. It 
represents a set of observables of an unknown function 

)(ˆˆ tfy  , taken at equidistant time instants separated by the 

interval Δt i.e. ti+1= ti+Δt. One step ahead forecasting means to 
find such a function f that will perform the mapping 

ε1
ˆ)1(1  mymtfmy  

where 1ˆ my   is the desired response, with an acceptable error 

ε. 

 
Figure 1.  Fully connected feed-forward artificial neural network with one 

hidden layer and multiple outputs. 

In the next, we will first briefly introduce the feed-forward 
neural networks that will be used as a basic structure for 
prediction throughout this paper.  

The network is depicted in Fig. 1. It has only one hidden 
layer, which has been proven sufficient for this kind of 
problem [14]. Indices: “in”, “h”, and “o”, in this figure, stand 
for input, hidden, and output, respectively. For the set of 
weights, w(k, l), connecting the input and the hidden layer we 
have: k=1,2,..., min, l=1,2,..., mh, while for the set connecting 
the hidden and output layer we have: k=1,2, ...mh, l=1,2,..., mo. 
The thresholds are here denoted as θx,ωr, r=1,2, …, mh or mo, 
with x standing for “h” or “o”, depending on the layer. The 
neurons in the input layer are simply distributing the signals, 
while those in the hidden layer are activated by a sigmoidal 
(logistic) function. Finally, the neurons in the output layer are 
activated by a linear function. The learning algorithm used for 
training is a version of the steepest-descent minimization 
algorithm [15]. The number of hidden neurons, mh, is of main 

concern. To get it we applied a procedure that is based on 
proceedings given in [16].  

In prediction of time series, in our case, a set of observables 
(samples) is extracted (one peak value per day) from the 
UNITE 1997 file. According to (1) we are predicting one 
quantity at a time. To make the forecasting problem 
numerically feasible we performed a small transformation in 
the response. Namely the samples are reduced in the following 
way 

 y=y* - M 

where y* stands for the measured value of the target function, 
M is a constant (here M=600 kW). 
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Figure 2.  Load peak values for April/May 1997. 

If the architecture depicted in Fig. 1 was to be implemented 
(with one input and one output terminal) the following series 
would be learned: (ti, f(ti)), i=1,2,....  

The observables are illustrated by Fig. 2. It represents the 
daily peak values in the period from April 07, to May 06, 1997. 

III. THE ETCR SOLUTION 

Starting with the basic structure of Fig. 1, in [2,3,4] 
possible solutions were investigated and two new architectures 
were suggested to be the most convenient for the solution of 
the forecasting problem based on short prediction base period. 

The first one, named extended time controlled recurrent 
(ETCR) was inspired by the time delayed recurrent ANN. It is 
a recurrent architecture with the time as input variable so 
controlling the predicted value. Our intention was to benefit 
from both: the generalization property of the ANNs and the 
success of the recurrent architecture. Its structure is depicted in 
Fig. 3. In this figure i stands for the sample counter and in fact 
represents the time variable i.e. the day. ti stands for the daily 
peak value time while yi is the daily peak value. Here in fact, 
the network is learning two sets of variables. The first is the 
output value representing the daily peak power consumption 
for the next day is controlled by the present time (variable i) 
and by its own previous instances. The second is the daily peak 
value time which is controlled by the same data: 
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  i=8,9,...       (2)

In these first proceedings we chose four recent samples and 
one one-week old to control the output. That choice was 
confirmed by the results obtained so no new attempts were 
made to complicate the training set of the ANN. 
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Figure 3.  ETCR. Extended time controlled recurrent ANN. 

TABLE I.  TRAINING DATA FOR THE ETCR ANN AT APRIL 30, 1997. 

i yi-1 yi-2 yi-3 yi-4 yi-7 yi-14 yi 

8 84 74 82 13 103 167 53 

9 53 84 74 82 97 140 17 

10 17 53 84 74 51 137 10 

11 10 17 53 84 13 76 -26 

12 -26 10 17 53 82 135 -19 

13 -19 -26 10 17 74 21 79 

14 79 -19 -26 10 84 94 88 

15 88 79 -19 -26 53 103 89 

16 89 88 79 -19 17 97 66 

17 66 89 88 79 10 51 20 

18 20 66 89 88 -26 13 05 

19 05 20 66 89 -19 82 89 

20 89 05 20 66 79 74 63 

21 63 89 05 20 88 84 24 

22 24 63 89 05 89 53 24 

23 24 24 63 89 66 17 52 

24 52 24 24 63 20 10 15 

25 15 52 24 24 05 -26 -37 

26 -37 15 52 24 89 -19 15 

27 15 -37 15 52 63 79 77 

28 77 15 -37 15 24 88 29 

29 29 77 15 -37 24 89  

 

According to this definition when preparing the training 
data for the ETCR ANN, sets of vectors were created by 
extracting data from the original similarly to the time series 
reconstruction technique that stems from the embedding 
theorem developed in [17,18]. The ith input training vector 
would be: 

xi={i, yi-1, yi-2,yi-3, yi-4, yi-7,yi-14} , 

while the corresponding training output vector would be 

zi={yi}. 

In this proceedings i{8,28}. Namely, 21 training lessons 
were used. The training data are given in Table I. 

The task was to predict the peak value at April 30, 1997, 
which was given in the literature [5] to be 609 kW. The 
resulting ANN had 7 input, two output, and 5 hidden neurons. 

After proper excitation the prediction was y29={625.3241}, as 

can be seen from Table II.  

Summarizing the example, in order to get a picture about 
the research that should be done, we will state here the list of 
parameters that are to be set for the prediction procedure to 
become stable, repeatable and reliable. There are two domains, 
being interrelated, that are to be parameterized: the domain of 
data and the domain of the ANN. In the data domain we are to 
define the number of samples presented to the ANN as input in 
every training lesson, q. Then, the complete set of input data is 
to be defined. Its length will be denoted by p. The number of 
lessons is p-q since, while creating the next lesson, we shift the 
data window by one to the future. As we can see from Table I, 
in the example above q=4 and p=25 (The set starts at i=4 and 
ends at i=28). Further, since we want to use the value from the 
previous week we need to have more samples in the past so 
that s+q=7. In cases where more than one week backward is 
defined as necessary data, we will extend the input set by 
7∙(r-1)+s data, r being the number of weeks backward. All 
together, from the data point of view we are to choose three 
parameters: r, p and q. The value of q partly defines the 
number of ANNs inputs related to one of the variables to be 
predicted as can be seen from Fig. 3 for q=4. Similarly r 
defines the number of additional inputs for a week old data. In 
this proceedings we use r=2. Having all that in mind we may 
conclude that the number of input and output terminals of the 
ANN is fixed by the data structure. The remaining free 

parameter is the number of hidden neurons, mh. That makes 

four parameters necessary to be estimated in order for the 
method to be completely defined. Here, however, we will show 
only preliminary results confirming the feasibility of the 
method and encouraging for a serious effort to be done for the 
estimation of the four parameters appropriate for the proper 
implementation. 

IV. THE EFFAP SOLUTION 

The second structure was named extended feed forward ac-
commodated for prediction (FFAP) and depicted in Fig. 4. We 
use the same notation as in Fig. 3. Our idea was here to force 
the neural network to learn the same mapping several times 
simultaneously but shifted in time. In that way, we suppose, the 
previous responses of the function will have larger influence on 

the f(t) mapping. Note that yi+1 is learned meaning a set of data 

shifted by one in time was used in this case. 

In that way for the approximation function we may write 
the following 
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TABLE II.  PREDICTION RESULTS WITH TWO WEEKS BACKWARD DATA (APRIL 30,1997). 
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1 609 625,3241 2.68 653.2675 7.27 639.2958 4.975 5 5 

2 549 655.4755 19.39 628.6489 14.51 642.0622 16.95 5 5 

3 591 678.138 14.74 586.2964 -0.80 632.2172 6.97 6 6 

4 557 569.3818 2.22 659.0633 18.32 614.2226 10.27 4 4 

5 677 634.3647 -6.30 538.9573 -20.39 586.661 -13.34 5 5 

6 646 540.3626 -16.35 577.984 -10.53 559.1733 -13.44 5 5 

7 653 583.5895 -10.63 650.1992 -0.43 616.89 -5.53 5 5 
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Figure 4.  The Extended feed forward accommodated for prediction ANN 

(EFFAP) according to (3). 

The new network is approximating the future (unknown) 

value yi+1, based on the actual time i, the actual peak value 

coordinates (yi), three past peak value coordinates (yi-k, 

k=1,2,3), and the past peak value coordinates for the same day 

of two previous weeks (yi-6,yi-13). 

The resulting ANN for  Appril 30, 1997, had 3 input, 5 
outputs, and 5 hidden neurons. After proper excitation the 

prediction was y29= {653.2675}. As can be seen from Table II, 

now the prediction is slightly worse in comparison with the 
ETCR solution for the same day. 

To get a complete picture about the capabilities of the 
method, the same procedure, for both ETCR and EFFAP, was 
applied for the nex six days. The results obtained are depicted 
in Table II. Lookin for the relative error depicted in columns 4 
and 6 of that table we may conclude that none of them may be 
pronounced better. In both cases the maximum error in 
prediction is about 20%. 

After this, one more aspect of the procedure may be 
discussed here. Namely, since in reality we have no knowledge 
of the quality of the prediction we need some kind of stoppage 
criterion in the estimation of the parameters mentioned. In that 
sense we insist the two predictions i.e. EFFAP and ETCR, to 

support each other (i.e. to be of similar value) and the predicted 
values not to abandon a foreseen interval established by 
examining the complete set of input data. In this example, 
looking into Table I, we may adopt the upper limit of the 
prediction to be 735•1.1=808.5, while the lower limit to be 
563•0.9=506.7. A 10% margin was added to the maximum 
value in the data of Table I for the top limit, while 10% margin 
was subtracted for the lower limit. 

Peak Power [kW]
Actual

Day in the week

Prediction 

 
Figure 5.  Seven consecutive predictions compared with the actual values of 

peak daily electricity consumption (April 30 to May 06, 1997). 

Day in the week

Prediction error [%]

 
Figure 6.  Relative discrepances between actual and predicted peak daily 

electricity consumption. 
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V. SUMMARY AND CONCLUSION 

Preliminary results on implementation of the ETCR and 
EFFAP ANNs for prediction of peak daily electricity loads 
were reported above. 

As expected the prediction obtained by application of the 
two ANN structures differ. These are both necessary, however, 
in order to mutually support since, in prediction, no other 
reference is available. The main criterion for acceptance is the 
mutual similarity of the results produced by different methods. 
Since, however, none of them may be considered better in 
advance one is to profit of both by using the average. The 
averaged prediction values and the corresponding errors are 
also given in Table II. Note the worst case prediction is now 
about 17%.  

These results are visualized in Fig. 5, where the actual and 
the average prediction value are shown for seven consecutive 
prediction produced fully independently from each other. 
Fig. 6, depicts the relative discrepancies between the curves of 
Fig. 5. 

Based on the preliminary results reported above we find the 
method proposed feasible for implementation in short term 
prediction of daily peak loads with no use of environmental 
data. The number of previous days and weeks used for 
prediction will be considered in more detail in the future.  
Multistep ahead prediction will be investigated, too. 
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