
The Design of MCU's Communication Interface
Borisav Jovanović, Dejan Mirković and Milunka Damnjanović

University of Niš, The Faculty of Electronic Engineering,
Niš, Serbia

{borisav.jovanovic, dejan.mirkovic, milunka.damnjanovic}@elfak.ni.ac.rs

Abstract— In this paper, the communication between a
microcontroller IP block and external Base band microprocessor
is examined. The microcontroller is a part of a complex
integrated System-on-chip and uses standard 8051 instruction
set. The paper describes the operation of embedded circuits that
allow programming, software debugging and communication
with external microprocessor. The communication is based on
SPI interface.

Keywords - 8051 microcontroller, SPI interface,
communication

I. INTRODUCTION
The 8051 microcontrollers are used in many electronic

circuits and systems wherever some signal processing or a
process control is required. Depending on the user
requirements, many microcontrollers’ characteristics have to be
chosen, such as clock frequency and set of peripheral units.

There have been different implementations of the 8051
microcontroller [1], [2]. Also, there have been many examples
of chips in which the 8051 microcontroller is implemented
together with some other IP blocks [3]. In our case, the
designed 8051 microcontroller IP block is part of an integrated
power meter (IPM) System-on-chip [4]. The designed IPM
incorporates all the required functional blocks for 3-phase
metering, including a precision energy measurement front-end
consisting of Sigma Delta AD converters, digital filters and
digital signal processing block; 8051 microcontroller, real-time
clock, LCD driver and programmable multi-purpose
inputs/outputs. The IC requires a minimum of external
components, inherently improving meter reliability,
simplifying manufacturing process and providing a fast time-
to-market metering solution. [4]

This paper describes one practically implemented system-
on-chip, with communication between the integrated 8051
microcontroller block and the external Base band
microprocessor. This paper thoroughly explains one efficient
method for serial communication that allows microcontroller
integrated block programming, software debugging and data
transfer implementation.

In the Section 2 the global characteristics of the integrated
microcontroller are given. Then, the microcontroller’s
interconnections to surrounding chips are explained. The serial
communication interface which is used for basic control of the
microcontroller is given. The operations of embedded circuits
are explained that allow programming, software debugging and
communication. After, in the Section 3, the microcontroller’s
implementation is described, which also explains the basic
steps of verification phases within the integrated circuit design
flow. Then, the suggested chip testing setup is described, which

uses the serial communication routines for chip programming
and testing.

II. THE MICROCONTROLLER

A. The microcontroller's description
The proposed microcontroller (MCU) IP block executes the

industry standard 8051 instruction set. The instruction set is
complex since it contains exactly 255 different assembler
instructions. Moreover, the presence of six different addressing
modes classifies this type of microcontroller as Complex
instruction set computer (CISC). The microprocessors with
complex instruction set are difficult for design, especially when
tight design requirements have to be met, such as low power
operation or high clock frequency.

Although the MCU has only 8 bits, because of the fact that
the instruction set is supported by many software development
tools, it is still very popular and widely used [5]. Also, the
microcontroller fulfils the design requirements of System-on
Chip (SoC) in which the MCU is incorporated, including the
speed and benefits of rich instruction set.

The global architecture of proposed microcontroller can be
divided into following blocks:

• the MCU core,

• the memory blocks,

• the block for programming and initialization

• the peripheral units.

The MCU core fetches, decodes and executes the
instructions. It has the speed of one byte instruction executed in
only two clock cycles. The maximum clock frequency is equal
to 60MHz. The MCU offers the low power options, since it can
operate at several clock frequencies. The MCU integrates the
clock divider circuit which can reduce the clock frequency by a
factor of 32.

The peripheral units include three 8-bit programmable
digital parallel input/output ports, Inter-integrated circuit (I2C),
Universal serial receiver/transmitter block (UART) and Serial
protocol interface (SPI). The communication modules are used
for the communication with external chips such as EEPROM
memories and Base band processors. Furthermore, three
counter/timer circuits are included.

All memory blocks, specific to 8051 microcontrollers, are
physically implemented in the chip, including the 8kB SRAM
used for program code storing. The 8kB memory block is
volatile and program code is lost when chip is powered down.
Instead of using on-chip non-volatile memory block, an

X International Symposium on Industrial Electronics INDEL 2014, Banja Luka, November 06�08, 2014

99

external I2C serial memory is utilized. Namely, every time
after the chip is powered up, the I2C memory content is read
though I2C communication lines and loaded into 8kB SRAM
memory block. Beside program code memory the chip
incorporates two more SRAM memory blocks: Dual-port 256B
internal RAM (IRAM) and 2kB external RAM (XRAM)
blocks.

B. The MCU's interconnections to surrounding blocks
The microcontroller IP block is a part of complex SoC and

it is used for autonomous control of other IP blocks which
belong to the same chip - the digital filters, digital signal
processing (DSP) block and real-time clock (RTC) circuit.
Namely, the MCU is connected via local SPI lines (Fig. 1) to
on-chip mixed signal blocks, which all have embedded SPI
communication sub-modules with distinctive SPI addresses. In
this communication the MCU is considered as a master unit,
which initiates data transfer with other (controlled) IP blocks.
The microcontroller’s software simply read the status registers
and writes the control registers of IP blocks via SPI.

The microcontroller itself is not fully autonomous. Instead,
it is controlled by external Base band processor (Fig.1). Base
band processor can reset the MCU or select one of the
available options for MCU program code initialization.
Namely, the MCU’s program code can be loaded either from
external I2C EEPROM memory or it can be loaded from Base
band microcontroller via external SPI communication data
lines (Fig.1). Beside the reset and programming options, the
Base band can access the IRAM memory locations and SFR
registers when MCU’s software verification and debugging is
performed. The communication with Base band controller will
be further examined in detail.

Figure 1. Global diagram of 8051 microcontroller, embedded into SoC

The MCU programming and control options are enabled
by SPI module (Fig.1), which represents the main interface in
the communication between Base Band processor and MCU.
The SPI module utilizes the standard SPI communication
protocol and following digital lines: SCLK – for the clock
signal; DIN - input data line; DOUT – output data line and

SEN – enable signal. The SCLK, DIN and SEN are module's
input signals and DOUT is the output signal.

In the external SPI communication the role of MCU is
changed compared to the internal chip SPI communication
between MCU and other on-chip IP blocks. Now, the Base
band processor is a master and the MCU can be considered as
a slave. The main challenge during the chip design and
verification is related to the Base band SPI clock (signal
SCLK in Fig.1) which is not in synchronization with the main
MCU clock signal. These two clock signals can have different
frequencies and phases. Therefore, the synchronization
between two clock domains had to be implemented too.

The SPI module reads and writes the 8-bit registers named
with REG0 to REG5. These registers are used for MCU
initialization, control and data transfer. For example, the
registers REG0 and REG1 are connected to the parallel data
input/output ports P0 and P1 which are used for the
communication between the Base band and MCU. Namely,
two MCU peripheral ports P0 and P1 are 8-bit wide and they
are used to expand communication possibility between Base
Band processor and MCU. The data at port P0 input is
changed by writing data into the REG0 register; the Base band
can read the port P1 output by reading the REG1 register.

Through REG2 the Base band controls the MCU’s control
input pins such as the main reset pin and programming mode
selection input pins. Over REG3, the MCU provides the Base
band its status signals. The REG4 and REG5 are used for data
transfer between the MCU and Baseband which is needed
during MCU programming, verification and testing
procedures. The names, corresponding register addresses and
short descriptions are given in the Table 1.

TABLE I. SHORT DESCRIPTION OF REGISTERS REG0-REG5

mSPI’s
register

register
address

Description

REG0 0000000 Writes to port P0 inputs
REG1 0000001 Reads from port P1 outputs
REG2 0000010 Controls MCU input control pins
REG3 0000011 Reads MCU status signals
REG4 0000100 The data byte to be written into

MCU
REG5 0000101 Reads data byte from MCU

C. The SPI registers used for data transfer between the MCU
and Base band processor

Figure 2. The register REG2 content controlling MCU input pins

100

The brief description of most important bits of registers
REG2 and REG3 which are necessary for 8051 MCU
communication with the Base band processor is given as
follows.

The register REG2 (Fig. 2) is connected to MCU’s input
pins. The bits MODE1 and MODE0 of REG2 (bit positions 1
and 0) are used to control the chip boot-up. The detailed
descriptions of chip programming modes will be given in the
next Section.

Figure 3. The register REG3 reading the status signals

The REG3 (Fig. 3) is read-only register. The bit 3 – the
READ_REQ indicates that 8-bit data, available in the register
REG5, is ready for transfer from MCU to the Base band. The
bit 2 - WRITE_REQ is status signal holding the information
that a new data byte in REG4 is waiting to be read by MCU.
The FULL_WRITE_BUFF at bit position 1 indicates that 32-
byte microcontroller’s input FIFO buffer is full, so, Base band
processor has to wait. The signal at bit position 0 - the
EMPTY_WRITE_BUFF tells that 32-byte input FIFO is
empty.

D. The read and write operations and the synchronization
between the two clock domins
The REG4 write operations are performed during program

code transfer from Base band to MCU and MCU’s software
debugging procedures.

During a write operation a data byte is written into the
REG4. The following control signals are used: WRITE_REQ,
EMPTY_WRITE_BUFF and FULL_WRITE_BUFF.

Figure 4. The data transfer to MCU through the register REG4

Since Base band's SPI clock and MCU’s clock are not
synchronized, the handshaking is implemented by signal
WRITE_REQ (Fig. 4). The synchronization between two
clock domains is achieved at the flip-flop producing the signal
WRITE_REQ. The WRITE_REQ is set when new data byte is

written into the register REG4. Namely, the WRITE_REQ is
set to logic 1 synchronously with Base band’s clock signal
(the signal SPI_Clk given in Fig.4). After the MCU takes the
data byte, it automatically resets the WRITE_REQ. The
MCU’s control logic which operates at clock frequency
MCU_Clk, now asynchronously resets the flip-flop producing
the signal WRITE_REQ.

Figure 5. The data transfer to the Base band through the register REG5

The read operations happen during MCU’s debugging.
Then, the data is read by Base band through register REG5.
Since Base band SPI clock and MCU’s clock do not have to
be synchronized the handshaking is implemented. The circuit
implementing the read operation is given in Fig. 5. The
synchronization between two clock domains is achieved at
flip-flop producing the signal READ_REQ. When data byte is
loaded into the REG5, the MCU sets the READ_REQ signal.
Note that the signal READ_REQ is set synchronously with
main clock signal of the microcontroller (the MCU_Clk given
in Fig. 5). When REG5 is read through SPI module, the
READ_REQ is automatically reset by SPI interface control
logic. The control logic loading the register REG5 operates at
Base band’s clock frequency (signal SPI_Clk given in Fig. 5)
and generates the short pulse which asynchronously resets the
flip-flop producing the signal READ_REQ.

Synchronizing between clock domains is accomplished by
registering the signals through a flip-flops that are clocked by
the source clock domain, thus holding the signal long enough
to be detected by the higher frequency clocked destination
domain. To avoid issues with meta-stability in the destination
domain, a minimum of 2 stages of re-synchronization flip-
flops are included in the destination domain.

III. THE IMPLEMENTATION OF THE MICROCONTROLLER

A. Design and verification
The microcontroller was implemented in TSMC 65nm

technology [6]. It operates at voltage supply of 1.2V. The
following Cadence tools [7] have been used during the chip
design:

• RTL Compiler for logical synthesis

• SoC Encounter for implementation.

• NCSim for logical verification

The MCU has the following advantages:

101

• new architecture provides speed of one 8-bit
instruction executed in only two clock cycles

• operating frequency maximum is 60MHz

• low power operation; at frequency of 60MHz the
power consumption is only 3mW.

The logical verification procedures focus on the MCU
programming options which are achieved through SPI
interface.

The MCU logical verification process begins by writing
the C programs, which are compiled by Keil [8] or SDCC [9]
into 8051 .hex file. After, the special C program converts the
.hex file into VHDL code. This code provides the program
memory content, which is instantiated into the main test
bench.

The test bench program simulates the MCU's
surroundings. The same test bench includes the instance of
MCU which is being verified, the SPI communication module
of Base band processor and external I2C EEPROM memory.
The VHDL description of MCU also includes the VHDL code
of internal SPI module. The control logic of test bench
simulates the operation of Base band processor and describes
the program code transfer to the MCU and EEPROM memory.
The data bytes are sent first via SPI interface and after to the
EEPROM.

During the logical verification process, the SPI module of
Base band reads the program memory content and byte-after-
byte transfers it to the SPI module of MCU. The logical
verification results, obtained by simulation waveforms,
present the SFR register's content. The MCU operation is
simply verified by comparing the expected and obtained
results.

The absence of synchronization which exists between the
Base band SPI clock signal and main MCU's clock signal
made the design of communication modules more difficult. To
overcome this problem, additional circuits for synchronization
are added to the communication blocks which synchronize
two clock domains. The verification process considered
different combinations of clock signal frequencies. The
MCU's clock frequency maximum is 60MHz and Base band
SPI communication is 100MHz. The MCU's clock frequency
value is decreased by clock divider circuit. The SPI clock of
Base band is changed from 100MHz down to 1MHz.

Two options are supported here, one using external (off
chip) EEPROM and another without external EEPROM.

Option A: Using external EEPROM

• Base band sets the MCU programming mode
MODE(1:0)="01"

• Base band uploads 8KB into SRAM Program
memory.

• While receiving 8KB, MCU flushes Program memory
into the EEPROM.

• When transfer is finished, the MCU starts executing
the code.

With this option, also, the following is enabled:

• If Baseband sets MCU programming mode
MODE(1:0)="11", the EEPROM content is read and uploaded
into 8kB SRAM. The SPI is not used for program code
transfer

• When transfer is finished, the MCU starts executing
the code.

Option B: No external EEPROM

• Base band processor sets MODE(1:0)="10"

• Base band processor uploads 8KB into Program
memory via SPI registers.

• After receiving 8KB, the MCU starts executing the
code.

Option A loads the on-chip SRAM and external EEPROM.
The Base band controller sets the bits Mode(1:0)="01" of
REG2. Then, the bytes are sent in 32B packets over SPI. After
the chip has been programmed, the MCU sets the status bit
Programmed, which is located in REG3.

The on-chip program code memory is loaded from external
EEPROM when Base band sets the REG2 bits
Mode(1:0)="11". After chip is reset, the program code bytes
are automatically read from I2C EEPROM and loaded into the
SRAM. The control logic sent the control codes to the MCU
which performs the program code loading procedure via I2C
lines. The programming is finished when status bit
Programmed is set.

B. The 8051 MCU testing setup
The general test setup is depicted in Fig. 6. It is comprised

of control application, installed on computer and Printed
Circuit Board (PCB), specially designed for testing purposes.

The computer is connected to PCB over USB port. PCB
includes also the Baseband processor and I2C EEPROM,
dedicated to MCU program code storage (Fig. 6).

Figure 6. Global schematic of MCU testing setup

The control application implemented by [10], [11] sets the
parameters of all subsystems within the chip. The part of
control application is dedicated to 8051 MCU testing. It
enables:

• The MCU reset

• HEX file loading, dedicated to MCU program code

• Selecting the MCU programming options A and B, as
described below.

102

• Checking the MCU operation using Debug mode

• providing the IRAM memory and SFR registers
content, which is valuable for MCU testing, and also,
for MCU program code debugging.

The Base band firmware includes the software routines to
read and write the MCU registers. These functions directly
control the SPI communication lines between Base band
processor and MCU. The algorithms which is used for MCU
programming is described as follows.

Figure 7. The MCU programming operations

At the beginning, the MCU is reset by writing the
command into register REG2 (bits MODE(1:0)=”00”). After,
the bits are changed with MODE(1:0)=”01” or
MODE(1:0)=”10”, dependent of the programming mode
wanted. When programming mode 1 is chosen, the program
code is written into both SRAM and EEPROM. When mode 2
is selected, the code enters only the SRAM. The program code
is sent in data packets consisting of 32 bytes. The EmptyFIFO
status signal gives the information when MCU’s FIFO is ready
to take incoming bytes. The EmptyFIFO is checked by reading
the REG3 register. The bytes are written into REG4. The
operation is repeated 256 times to load 8kB MCU SRAM. At
the end, the bit Programmed is checked.

IV. CONCLUSION
The 8051 MCU IP block is a part of a complex System-on

chip and it is verified by systematic and thorough simulations.
The results are confirmed after the layout was designed.

The microcontroller is connected to external Base band
controller via SPI interface. In the serial communication, the
MCU is a slave and the Baseband is a master. The MCU offers
several programming options. In one of them, the program
code memory is loaded from Baseband via SPI into both on-
chip SRAM memory and external I2C EEPROM memory.
Moreover, the Base band has control over MCU. The serial
communication is particularly verified by simulations, the
methods are described in paper.

The MCU’s main clock signal does not have the same
frequency as SPI clock signal, which is produced by Base
band controller. Therefore, the synchronization between
different clock domains is done for reliable data transfer
between the MCU and Base band.

ACKNOWLEDGMENT
This paper was funded by the Ministry of Education,

Science and Technological Development, the project number
TR32004, entitled with "Advanced technologies for
measurement, control, and communications in the electricity
grid."

REFERENCES
[1] A. J. Martin, M. Nystrom, K. Papadantonakis, P. I. Penzes, P. Prakash,

C. G. Wong, J. Chang, K. S. Ko, B. Lee, E. Ou, J. Pugh, E. V. Talvala, J.
T. Tong and A. Tura, “The Lutonium: A Sub-Nanojoule Asynchronous
8051 Microcontroller”, in Proc. of ASYNC, 2003, pp. 14–23.

[2] J. H. Lee, Y. H. Kimand K. R. Cho, “A Low-Power Implementation of
Asynchronous 8051 Employing Adaptive Pipeline Structure”, IEEE
Transactions on Circuits and Systems II: Express Briefs, Vol. 55 , Issue
7, 2008, pp. 673 – 677

[3] K. L. Chang and B. H.Gwee, “A low-energy low-voltage asynchronous
8051 microcontroller cores,” in Proc. ISCAS, 2006, pp. 3181–3184

[4] B. Jovanović, M. Zwolinski, M. Damnjanović, “Low power digital
design in Integrated Power Meter IC,” in Proc. of the Small Systems
Simulation Symposium 2010, Niš, Serbia

[5] K. Arnold, Embedded controller hardware design, LLH Technology
Publishing, Eagle Rock, USA, 2000.

[6] TSMC 65nm standard cell library, http://www.europractice-
ic.com/technologies_TSMC.php?tech_id=

[7] Cadence, EDA software and verification tools
http://www.cadence.com/us/pages/default.aspx

[8] KEIL C compiler and development tool for 8051 microcontrollers,
http://www.keil.com/c51/ devproc.asp

[9] Open source SDCC C compiler for 8051 microcontrollers
http://sdcc.sourceforge.net/.

[10] Code::Blocks IDE, http://www.codeblocks.org/
[11] GCC, the GNU Compiler Collection http://gcc.gnu.org

103

