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Abstract—This paper gives an overview of five different models 

for self-similar network traffic generation (iterated chaotic maps, 

fractional Gaussian noise model, Pareto model and finite and 

infinite Markov chain model). The models are compared on the 

basis of Hurst parameter and mean value of generated sequences, 

and also on the basis of algorithm efficiency. R/S plot, Variance-

Time plot and Periodogram method are used for the Hurst 

parameter estimation. According to simulation results, the model 

which gives sequences whose parameters are close enough to the 

given ones is fronted. 

Keywords-Hurst parameter; long-range dependence; self-
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I. INTRODUCTION 

In modern packet-oriented networks, telecommunication 
traffic is considered to be self-similar process. Unlike the 
Poisson process (used for classic telephone traffic modelling), 
which get smooth when averaged over large timescales, self-
similar process retains its burstiness over a wide range of time 
scales [1]. 

There are several factors contributing to self-similarity of 
network traffic, such as link bandwidth [2], file size 
distribution, reliability and flow control mechanisms in the 
transport layer [3], VBR (Variable Bit Rate) video streaming 
[4] and others, so that the degree of traffic burstiness differs 
between network segments. 

 A number of papers have studied the impact of self-
similarity on network performance in terms of packet loss rate, 
queueing delay or throughput [2], [5], [6]. Synthesized self-
similar traffic is important in evaluating the performance of 
various switch architectures under realistic conditions. A good 
traffic model may lead to a better designing routers and 
network devices which handle long packet bursts. According to 
differences in the traffic statistic within different parts of the 
network, the generator is recquired to be flexible enough. 

A lot of self-similar traffic generator models are developed, 
but none of them simulates all aspects of real traffic. This paper 
provides comparison of some of the most referred models. 

II. PARAMETERS OF SELF-SIMILAR PROCESSES 

In this section, an overview of basic concepts and terms of 
self-similar network traffic is given. 

As a measure of self-similarity the Hurst parameter (H) is 

used, where higher H (H(1/2,1)) implies higher self-
similarity.  

The packet traffic trace can be represented by binary 
sequence, where one stands for a packet and zero for an 
interpacket gap. If the sequence x is divided into non-
overlapping adjacent blocks of size m and then blocks are 
averaged, m-th order aggregation of the sequence is given as 
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     Two traffic traces with the aggregation scale m=1000 for 
different values of H are shown in Fig. 1. It can be noted that 
process with lower H becomes smooth when aggregated over a 
large scale. 
     A stochastic process is considered to be self-similar with 
parameter β, 0<β<1, if, for all m=1, 2, ..., the following applies: 
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The parameter β is related to H by H=1–β/2. The variance of 
the process with higher H decays more slowly with the increase 
of aggregation degree. 

 

Fig. 1. Traces with the aggregation scale m=1000 for different values of H. 
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     If distant time samples of the process are correlated, it is 
said to be LRD (Long-Range Dependence) process. The LRD 
process has a hyperbolically decaying autocovariance function: 

   



~C ,  as 10,   .  (3) 

The important characteristic of the self-similar process is 
that packet train and interpacket gap duration have a heavy-
tailed distribution. One of the most frequently used heavy 
tailed distributions is the Pareto with cumulative distribution 
function (CDF) given by: 

    0,,1 
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Parameter α, 1<α<2, denotes the tail index.  

III. SELF-SIMILAR TRAFFIC GENERATION 

In this section, five models for self-similar traffic 

generation, frequently found in literature, are presented. 

A. Iterated Chaotic Maps  

The iterated chaotic map (ICM) model is described by 

traffic load d ∈ (0, 1) and parameters m1, m2 (1.5, 2), which 

determine the slope of curve plotted in Fig. 2.  

 
Fig. 2. Graph of an iterated chaotic map for d=0.5. 

 

Based on initial value x0 (0, 1), the next one is given by: 
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The sequence x takes values between 0 and 1. The binary 

time series {yn: n ∈ N} is generated by applying the following 

rule: yi = 1 if xi < d and yi = 0, otherwise. If m1=m2=m, the 
relation with H is given by H = (3m–4)/(2m–2). Thus, 
parameters d and H describe the model. 

When close to the mean value d, short sequences of zeros 
and ones are generated. Long sequences are generated when xn 
is found near points zero or one, by which traffic burstiness is 

obtained. A detailed explanation about the model can be found 
in [7]. 

B. Pareto Traffic Generation  

The starting model hypothesis is that the time of packet 

train and interpacket gaps have a Pareto distribution (Fig. 3).  

 
Fig. 3. Pareto vs exponential density distribution function. 

 

Two random variables are required to generate binary 

sequences. One variable stands for packet sequence duration, 

and the other for interpacket gap duration measured in time 

intervals equal to packet duration. As x≥β (eq. 4), parameter β 

presents the shortest length of the packet train. Tail index, α 

(1<α<2), defines how fast CDF decays. As α →1, the rate of 

decay is low, indicating that appearance of longer bursts is 

more probable. Poisson distribution (used for classic voice 

traffic modelling) decays much faster (exponential) compared 

to Pareto distribution.  
The parameter H depends on both parameter value, α and β. 

Larger β, as well as α closer to unity, causes longer bursts. 
Anyway, it was showed that the effect of β is not so influential  
on the degree of self-similarity as α is. The relation with H is 
H=(3–α)/2. Details of the algorithm can be found in [6]. 

C. FGN Traffic Generation   

The Fractional Gaussian noise (FGN) traffic generator 

produces the streams of variable-length packets with self-

similar statistics, unlike Pareto generator, which gives fixed 

length packets [6].  

The model is based on features of LRD process in the 

frequency domain. The first step in synthesis of self-similar 

sequence is the estimation of FGN power spectrum with given 

Hurst parameter (Fig. 4). The Inverse Fourier Transform 

(IFFT) is used to obtain the time trace which looks like noise. 

It is necessary to modify time trace to obtain the desired 

variance and mean value. Every sample then represents a flow 

in number of packets per time unit.  

To obtain a sequence of packets of variable lengths, it is 

necessary to know pakcet distribution in the observed network 

segment. More details on the model can be found in [6], [8], 

[9]. 
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Fig. 4. The power spectrum of FGN process. 

 

This method requires that the size of sequence which needs 

to be generated to be defined.  

D. Markov Chain Based Models 

An infinite Markov chain (IMC) can be used to generate a 

time series exhibiting LRD (see Fig. 5). If the chain is in the 

state i, i≠0, it moves to state i–1 in next time instant generating 

one in the output sequence. Only in the state i=0 (zero state), 

zero is generated in the output sequence. Any state, i, can be 

reached from the zero state with the transition probability fi. In 

brief, if the chain changes its state from 0 into n (n≠0), then 

the sequence of n ones will be generates. The sequence of 

zeros will be generated if the chain remains in the zero state.  

In practical implementation, IMC does not have an 

infinitive number of states. It is specified to an maximum state 

Nmax. For finite Markov chain (FMC) model, the number of 

states, N, is fixed. It is also the maximum packet burst size. 

Since burstiness is the condition for the self-similarity, the 

sequence with large H cannot be obtained with low N. 

In infinite Markov chain realization, the number of states is 

determined dynamically. The initial number of states, N, 

a relatively small number, is specified. If the probability fi, 

generated in the zero state, does not correspond to any state in 

range from 0 to N, then states from N+1 to 2N are generated 

and the state corresponding to given probability is looked for. 

The procedure is repeated until the maximum state, Nmax, is 

reached. Therefore, this chain is also constrained by Nmax, but 

Nmax could be very large number. 

Details about these models can be found in [7],[10]. 

 

 

 

 

 

 

 
 

Fig. 5. An infinite Markov chain. 

IV. HURST PARAMETER ESTIMATION TECHNIQUES 

The properties of self-similar processes (see Section II) 

lead to the different methods to estimate H.  

 The R/S statistic is a method that estimates the parameter 

H as a slope of the straight line in plot of log(R/S) versus 

log(T), where R is a measure of the range of the process, S is 

the standard deviation of the sample and T is the time interval.  

The Variance-Time plot (VTP) method estimates the Hurst 

parameter on the basis of the variance of the aggregated time 

series. Considering eq. (2), a plot of log[Var(x
(m)

)] versus 

log(m) will yield a straight line with slope of –β. The Hurst 

parameter is related to β by H=1–β/2. 

The Periodogram plot is a frequency domain technique, 

unlike the previous two methods which are the time domain 

estimators. By plotting log(Sn) versus log(ω), where Sn denotes 

the power spectrum density of n-length time-sequence block, 

and ω is the frequency, the points of the periodogram scattered 

around a negative slope are obtained. An estimate of the Hurst 

parameter is given by H=(1–γ)/2, where γ is the slope. 

More about these techniques can be found in [10]. 

V. SIMULATION RESULTS 

For traffic generator models presented in the Section III, H 

and traffic load values of generated sequences are estimated 

by simulation analysis.   

For ICM model, parameters m1 and m2 are equal. The 

shortest packet burst length for Pareto generator is β=1. For 

FMC model, different chain lengths are specified for various  

H values in order to attain the appropriate burstiness [10]. 

Chain sizes are N=2
13

, 2
14

, 2
15

, 2
16

, 2
17

, for H=0.55, 0.65, 0.75, 

0.85 and 0.95, respectively. For IMC model, the initial chain 

length is N=256, and maximum one is Nmax=65636 for H<0.8 

and N=2
10

, Nmax=2
20 

for H>0.8. 

The R/S plot, Variance-Time plot and Periodogram plot are 

used to estimate H from simulated sequences. 

Each model, except the FGN, provides the binary sequence 

of ten million bits. The parameter H is estimated for the 

sequence aggregation of degree m=100. The FGN model 

generates a sequence of 100 000 points. The mean value Havg 

and standard deviation σH are calculated for the Hurst 

parameter value estimated for 50 sequences. Traffic load is 

equal to ρ=0.5. The results are shown in Table I. 

Based on the results, it is noticed that R/S method provides 

small standard deviation with lower H values when compared 

to other two methods. For higher H values, R/S method 

provides much higher standard deviation.  

For H=0.55 and H=0.65, the FGN model generates series 

with H close enough to specified one. For higher values of H, 

the FMC model provides better results than FGN in terms of 

estimated H. Though, it should be bared in mind that the FGN 

has the lowest standard deviation for all specified H values. 

For ICM and Pareto models, the difference between specified 

and estimated H is large. Also, the variance of H is larger 

compared to other models.       
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TABLE I. ESTIMATION OF THE HURST PARAMETER. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Results for IMC model are much lower than expected for 
H>0.7. None of the observed models can reach very high Hurst 
parameter values as H=0.95. 

Performances of network devices are usually analysed 
under high traffic loads conditions. Also, higher values of H 
parameter are of interest.  Fig. 6. plots traffic load ρ for three H 
parameter values. Resultant load is calculated as average value 
of loads estimated for 50  sequences. 

FGN and FMC models provide traffic load which is close 
to the desired one. For other models, deviations from the 
specified value are much higher, especially for large traffic 

 

Fig. 6. Traffic load for different values of Hurst parameter.  

 

load and H parameter value.The IMC model is invalid for some 
combinations of ρ and H [10]. Values for these combinations 
are labeled in Fig. 6. with "x". 

All models are implemented in Matlab. To generate the 
binary sequence 10 million bits long, it took in average 0.3 
seconds for FMC, 0.87 seconds for FGN, 3.01 seconds for 
ICM, 3.92 seconds for Pareto model and 4.45 seconds for IMC. 
The execution time of algorithms depends on values of 
parameters H and ρ, and other parameters, such as size of a 
Markov chain. Given values are determined on 750 runs with 
various combinations of H i ρ as in Table I. 

VI. CONCLUSION 

Considering all results, among analysed self-similar traffic  
generator models, according to performances referring to Hurst 
parameter and traffic load of generated series, and also to 
algorithm efficiency, FGN model and the one with finite 
Markov chain are emphasized. The advantage of FGN model is 
lower variance of the Hurst parameter and traffic load which is 
closer to expected. The difference between desired and 
obtained H is smaller when FGN is used with smaller H values, 
although finite Markov chain has proven to be better for higher 
values of H parameter. The advantage of Markov model is its 
efficiency and its capability to attain higher Hurst parameter 
values compared to FGN model.  In applications where traffic 
generation in online manner is required, it is sometimes simpler 
to use Markov model because for FGN model the total length 
of sequence must be specified in advance. 
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0.95

Generator 

model
 H

R/S                    

Havg ± σH

Variance-Time        

Havg ± σH

Periodogram    

Havg ± σH

Iterated 

chaotic 

map

0.570 ± 0.025 0.567 ± 0.040 0.579 ± 0.038

0.611 ± 0.037 0.634 ± 0.072 0.642 ± 0.043

0.684 ± 0.114 0.729 ± 0.077 0.727 ± 0.033

0.751 ± 0.117 0.805 ± 0.046 0.810 ± 0.024

0.893 ± 0.192 0.890 ± 0.037 0.900 ± 0.017

Fractional 

Gaussian 

noise 

0.561 ± 0.016 0.548 ± 0.010 0.538 ± 0.011

0.655 ± 0.019 0.646 ± 0.011 0.629 ± 0.012

0.743 ± 0.018 0.737 ± 0.010 0.723 ± 0.012

0.824 ± 0.017 0.821 ± 0.013 0.811 ± 0.011

0.895 ± 0.020 0.889 ± 0.011 0.899 ± 0.011

Pareto 

distribution 

0.575 ± 0.019 0.561 ± 0.064 0.569 ± 0.049

0.613 ± 0.044 0.626 ± 0.069 0.652 ± 0.053

0.677 ± 0.060 0.712 ± 0.082 0.731 ± 0.036

0.768 ± 0.089 0.809 ± 0.059 0.814 ± 0.029

0.903 ± 0.252 0.894 ± 0.033 0.906 ± 0.017

Finite 

Markov 

chain 

0.586 ± 0.023 0.577 ± 0.029 0.598 ± 0.037

0.634 ± 0.043 0.644 ± 0.045 0.678 ± 0.051

0.724 ± 0.058 0.753 ± 0.037 0.775 ± 0.036

0.847 ± 0.081 0.836 ± 0.030 0.824 ± 0.025

0.946 ± 0.068 0.922 ± 0.008 0.925 ± 0.018

Infinite 

Markov 

chain 

0.569 ± 0.017 0.547 ± 0.032 0.559 ± 0.039

0.616 ± 0.037 0.626 ± 0.064 0.652 ± 0.056

0.664 ± 0.055 0.687 ± 0.060 0.712 ± 0.037

0.750 ± 0.085 0.785 ± 0.048 0.797 ± 0.027

0.808 ± 0.099 0.847 ± 0.030 0.872 ± 0.021
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