INDEL 2018

NBTI and Radiation Related Degradation and Lifetime Estimation in power VDMOSFETs

D. Danković and N. Stojadinović University of Niš, Faculty of Electronic Engineering Serbia

Objective

To develop

a cost-effective method suitable for NBTI measurement on p-channel power VDMOSFETs

To investigate

-effects of static and pulsed NBT stressing on threshold voltage in p-channel power VDMOSFETs IRF9520 -NBTI and radiation related degradation

To analyse

-recoverable and permanent components of V_{T} shift in stressed devices

-lifetime in stressed devices

Outline

Introduction

Experimental details

- Measurement method
- Devices

Results and discussion

- Static and pulsed NBT stress
- Lifetime estimation
- NBTI and irradiation

Conclusions

Introduction

- Degradation of power MOSFETs under the stresses, such as ionizing irradiation, high electric field, elevated temperature, etc., has been subject of extensive research
- Negative Bias Temperature Instabilities (NBTI) are critical:
 - in p-MOS devices
 - exposed to negative gate voltages (2-6 MV/cm)
 - at elevated temperatures (100-250°C)
- The above fields and/or temperatures are typical for burn-in testing, but also can be approached during the routine operation of power MOSFETs in automotive and industrial applications

NBTI are manifested as...

NBTI are manifested as...

Devices:

Commercial p-channel power VDMOSFETs IRF9520 built in Si-gate technology

(6.8 A / 100 V; V_T = -3.0 V; d_{ox} = 100 nm)

Experimental details Stress Type:

 $E_{ox} = 2-6$ MV/cm \leftrightarrow NBTI $d_{ox} = 100$ nm \leftrightarrow VDMOS

 $V_{GS} \approx E_{ox} \cdot d_{ox} \rightarrow V_{GS} \approx -20 \div -60V \parallel \parallel$ Owing to the thick gate oxide, NBT stressing of these devices required gate stress voltage amplitudes even over -20V

Tektronix APG 3102 105 2007	
120 AV 120 COLOO COO COO Ang The 10000 mg Bane Sea 1000 mg Bane Sea Come Sea Come Sea	
Land SODS Presson	
Loss of American Street	(· (· · · · · · · · · · · · · · · · ·

Measurement method: Conventional S-M-S (Traditional S-M-S)

Measurement method: Conventional S-M-S

Agilent B1500A Semiconductor Device Analyzer

There are two problems with this traditional NBTI characterization approach:

- 1. The stress voltage discontinuity, that occurs when the applied stress returns to zero before and after the degradation characterization, allows the device to recover from the applied stress.
- 2. The slow Vth measurement time also allows for recovery during the measurement phase.

Problem with traditional NBTI test

Experimental details_New Method

Measurement method: New Method for NBT Stress and Measuring NBTI Degradation in power VDMOSFETs

Block diagram for NBT stress and measurement on p-channel power VDMOS transistor

Tektronix AFG3102 Agilent 6645A Agilent 4156C parameter analyzer Heraeus HEP2

A. Prijić, D. Danković, Lj. Vračar, I. Manić, Z. Prijić, and N. Stojadinović, "A method for negative bias temperature instability (NBTI) measurements on power VDMOS transistors", *Measurement Science and Technology*

high voltage stress circuit

low voltage measurement circuit

NBT stressandmeasurementon p-channel power VDMOSFETs

Practical setup for NBT stress and measurement on p-channel power VDMOS transistor

- Tektronix AFG3102
- Agilent 6645A
- Agilent 4156C parameter analyzer
- Heraeus HEP2

Graphical user interface

Computer controlled over IEEE-488 (GPIB) bus. PC application software is developed using .NET technology

🖳 VDMOS NBT Test				_ 🗆 🔀
Eile				
Instruments USB-6009: Dev1 TEKTRONIX.AFG3102,C020237,SCPI:99.0 FV:1.2 HEWLETT-PACKARD.6645A,0fA.03.00sA.01.06p HEWLETT-PACKARD.4156C,0.03.08:04.08:01.00 Power Supply initialized Signal Generator initialized USB-6009 set up OK Power Supply set up OK Signal Generator set up OK Analyzer set up OK	Signal Generator Frequency (KHz): 10 Duty cycle (%): 50 Amplitude (V): -6,0 Power supply Current (A): 0,50 Voltage (V): 45,00 Amplyzer - Gate Sween	Measurement options Min. interval (sec): 60 🗭 Pause after stress (sec): 1.0 🗭 Results file name: results Saturation	Measurement timetable Scheduled 60 2 60 2 300 2 300 2 300 2 300 2 300 2 300 2 300 2 300 2 300 2 600 2 600 2	Measurement at 0.1.2012 12:46:44 (1.66) 0.1.2012 12:47:45 (1.60) 0.1.2012 12:50:47 (1.56) 0.1.2012 12:55:48 (1.65) 0.1.2012 13:00:50 (1.60) 0.1.2012 13:05:52 (1.66) 0.1.2012 13:10:53 (1.61) 0.1.2012 13:15:55 (1.68) 0.1.2012 13:25:57 (1.64)
Initialize Setup Measure Iest Cancel	From (V): -2,00 € To (V): -4,75 € Step (V): -0,05 €	Multiple measurements Time (sec): Add Get default Remove Remove all		Stress type DC only AC only DC first, then AC AC first, then DC

The timing sample of the gate voltage

the device remained unstressed for approximately 235 ms !!!

The timing sample of the gate voltage at an interim measurement during the NBTI test (measurement from -2 to -4.75 V, with -50 mV step; Tektronix DPO4035 oscilloscope).

Measurement Setup Verification

pause after stress=0s

Gate voltage (V)

Measurement Setup Verification

Gate voltage (V)

Measured transfer *I-V* characteristics in the 'knee' region, illustrating the recovery effect

Threshold voltage shift

 V_T values are calculated from *I-V* characteristics using second derivative method

Stress time (s)

The threshold voltage shifts were clearly more significant when the measurements were performed immediately after the stress

Experimental results 1st part NBT Stressing

Static

up to 36 hours

negative gate voltage -35, -40, -45 V drain and source terminals grounded temperature 125, 150,175°C Pulsed

- -

f= 10 kHz, *DTC*=50%

Electrical characterization:

Transfer I-V characteristics

Threshold voltage shift

Threshold voltage shift (net stress time)

 ΔV_T time dependencies have been affected by partial recovery during off time !!!

Experimental results 2nd part NBT Stressing

Pulsed

up to 24 hours negative gate voltage -45 V Temperature 175°C

T = period = on time + off time f = 1/period = 1/(on time + off time) DTC = on time/(on time + off time) Npulses = 24h/(on time + off time) Overall net stress time.... Overall recovery time....

Electrical characterization:

Transfer I-V characteristics

on time = 50μ s = const off time = varied

Experimental results 2nd part

on time = 50μ s = const, off time = varied

Stress conditions	Different groups of devices							
Pulse on-time [µs]	50	50	50	50	50	50	50	50
Pulse off-time [µs]	1.5625	3.125	6.25	12.5	25	50	75	100
Pulse period [µs]	51.625	53.125	56.25	62.5	75	100	125	150
DTC [%]	96.97	94.12	88.89	80.00	66.67	50.00	40.00	33.33
f [kHz]	19.39	18.82	17.78	16.00	13.33	10.00	8.00	6.67
<mark>≅Number of pulses</mark> for 24h [x10 ⁹]	1.674	1.626	1.536	1.382	1.152	0.864	0.691	0.576
Net stress time, overall [h]	23.27	22.59	21.33	20	16	12	9.6	8
Recovery time, overall [h]	0.73	1.41	2.67	4	8	12	14.4	16

Threshold voltage shift

NBT stress induced ΔV_T - most significant for static - decrease with f \searrow DTC \searrow

1st factor: lower duty cycle (or f)

- same on time
- longer off time

2nd factor: different number of pulses

lower duty cycle fewer pulses and lesser degradation

Stress time (s)

Stress conditions	Different groups of devices							
Pulse on-time [µs]	50	50	50	50	50	50	50	50
Pulse off-time [µs]	1.5625	3.125	6.25	12.5	25	50	75	100
DTC [%]	96.97	94.12	88.89	80.00	66.67	50.00	40.00	33.33
Number of pulses [x10 ⁹]	1.674	1.626	1.536	1.382	1.152	0.864	0.691	0.576

Threshold voltage shift (net stress time)

Time constant of 25 µs is very important in the case of pulsed NBT stress !!!

Threshold voltage shift

- Experimental results have pointed to the existence of characteristic time constant (25 µs) related to the recoverable and permanent components of stress-induced degradation.
- 25 µs off-time of the pulsed stress voltage was sufficient to completely remove the recoverable component of degradation in p-channel power VDMOSFETs.

Lifetime estimation

Lifetime estimation

Degradation monitor: stress-induced ΔV_T

Lifetime estimation:

1) Extraction of experimental lifetime values

Experimental lifetime – stress time required for stress-induced ΔV_T to reach failure criterion (FC) under the given stress conditions (V_G , T)

FC:
$$\Delta V_T = 50 \text{ mV}$$

2) Extrapolation to normal operating conditions (gate bias and/or temperature)

Lifetime estimation – Models

Voltage models

- $\tau = A \cdot exp(-B \cdot V_G)$ V_G model
- $\tau = A_1 \cdot exp(B_1/V_G)$ $1/V_G$ model
 - $\tau = C \cdot E p$ Power law model

New temperature model

 $\Delta V_T = C_1 \cdot Em \cdot tn \cdot exp(-E_a/kT)$ $\tau = A_2 \cdot exp(B_2/T)$

Extraction of experimental lifetime values

a) Extraction using (variable V_G , const T) data

b) Extraction using (const V_G , variable T) data

Extracted values of experimental lifetime:

- Shorter for higher stress voltages and/or temperatures

- Significantly longer in the case of pulsed NBT stressing

Extrapolation to normal operating conditions

Extrapolation to:

- $V_G = 20 \text{ V} \rightarrow \tau$ (lifetime) over three orders of magnitude higher under the pulsed gate bias conditions Devices may maintain proper functionality for much longer period under the pulsed gate bias conditions than if kept constantly under the dc bias

Extrapolation can be done to any gate voltage, but only for the temperature used in the NBT stress experiment

Extrapolation to normal operating conditions

Extrapolation along the temperature axis :

 \diamond exp. τ values extracted from (const V_G , variable T) data – (b)

 \diamond extrapolation model derived from a degradation model for stress-induced ΔV_{τ}

"1/T model"

10¹⁰ 10⁹ 10⁸ static stress pulsed stress. 10^{7} lifetime^P Lifetime (s) lifetime^s 10⁴ 1/T model 10³ FC: ΔV_{T} =50mV 10² V_=-45V 75 25 50 100 125 150 175 200 0 Temperature (°C)

Extrapolation to:

- $T = 100 \degree C \rightarrow \tau$ (lifetime) over two orders of magnitude higher under the pulsed gate bias conditions Devices may maintain proper functionality for much longer period under the pulsed gate bias conditions than if kept constantly under the dc bias

Extrapolation can be done to any temperature, but only for the gate voltage used in the NBT stress experiment

Double extrapolation along both voltage and temperature axes

Stress -35 V -40 V -45 V -20 V 125 °C 0 0 0 $\rightarrow 1/V_G \rightarrow 0$ 150 °C 0 0 0 $\rightarrow 1/V_G \rightarrow 0$ 175 °C 0 0 0 $\rightarrow 1/V_G \rightarrow 0$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ $1/T \qquad 1/T \qquad 1/T \qquad 1/T$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ $100 °C 0 0 \qquad 0 \qquad \rightarrow 1/V_G \rightarrow 0$

Legend:

o - experimental lifetime data

- o lifetime data obtained by 1/V_G model
- o lifetime data obtained by 1/T model
- o lifetime obtained by double extrapolation

Double extrapolation along both voltage and temperature axes

Lifetime estimation – 3D surface area

Lifetime estimation – Quasi 3D simulator

NBTI & IRRADIATION

Experimental results 3rd part

In some applications p-channel VDMOSFETs may be the subject of simultaneous irradiation and NBT stressing

IRRADIATION	NBTS	Annealing		
	Static			
dose 30 Gy, 60 Gy, 90 Gy	168 hours	168 hours		
negative gate voltage -10 V	-45 V	0 V		
temperature, room	175°C	175°C		

drain and source terminals grounded

Electrical characterization:

Transfer I-V characteristics

RAD&NBTS – Time dependencies of ΔV_T

NBT stress of irradiated devices caused

different threshold voltage behaviour strongly dependent on total dose received:

-in the case of highest total dose (90 Gy) it has actually lead to the decrease of V_T shift, -for total dose of 60 Gy threshold voltage shift was almost negligible, -in the case of lowest total dose (30 Gy) subsequent NBT stress induced further negative V_T shift.

NBTS – Time dependencies of ΔV_T

It is obvious that <u>two mechanisms</u> might be responsible for the effects observed during the postirradiation NBT stress:

(i) activation of electrochemical reactions contributing to NBTI, which leads to additional creation of Not and Nit,

and

(ii) annealing of irradiation-induced oxide charge and interface traps due to high temperature (175°C) applied.

Conclusions

- A description of a method suitable for NBTI measurements on p-channel VDMOS transistors was presented.
- Stress-induced degradation under the pulsed stress conditions was shown to be generally lower than in the case of static NBT stress.
- 25 µs off-time of the pulsed stress voltage was sufficient to completely remove the recoverable component of degradation.
- The use of voltage and temperature models for extrapolation to normal operation voltage and temperature is demonstrated.
- New approach in estimating the device lifetime, which assumes double extrapolation along both V_G and T axes, was proposed.
- Quasi 3D simulator for lifetime estimation in all kinds of MOS transistors, independent on production technology, was developed.
- Results of sequentially irradiation and NBT stressing were presented.